Unit 1:
Introduction

Lesson 2:
Discrete spatial variables
Content of Lesson 2

Unit 1: Introduction
Unit 2: Geometrical properties of individual features
Unit 3: Pattern and neighborhood of spatial features
Unit 4: Weighted Pattern and neighbourhood
Unit 5: Regionalization
Unit 6: Transformation of spatial features
Unit 1: Introduction

1: Definition and example of discrete spatial variables
2: Spatial features
3: Structure of the Lesson
4: Links
Definition and example of discrete spatial variables (discontinues)
2 types of spatial distribution of phenomena

- During the process of **modeling the reality**, properties of phenomena are considered as distributed into space in two different manners:
 - **Continuously**: the spatial arrangement of properties produces a **continuous surface** more or less complex
 - **Discontinuously or discretely**: the spatial arrangement of properties produces **spatial features** with clearly defined limits (boundaries)
Example of 2 types of spatial distribution

Continuous distribution

Discontinuous distribution

Elevation

Landcover

1: forest
2: culture
3: vineyard
4: swamp
5: lake
6: built up
7: road
8: river

B-AN / L2
Discrete spatial variables

U1: Introduction

March 9, 2003
The reality is more fuzzy ...

- In the real world numerous phenomena lie within these 2 extremes:
 - Continuous distribution: one can often observe local discontinuities, such as cliffs in elevation distribution.
 - Discontinuous or discrete distribution: Limits between features are often fuzzy, such as between forest and grassland, or between waterbody and land.
The reality is more fuzzy ...

- Regardless of the nature of a phenomenon, the spatial continuity or discontinuity is decided during the process of **modeling the reality**:
 - The phenomenon of «elevation» can be considered as:
 - **continuous**: spatial properties are then described as a continuous surface, with a regular mesh of values at an intervall-ratio scale (continuous)
 - **discontinuous**: spatial properties are elevation class values at an ordinal scale (discontinuous), therefore space is organised into regions of same property.
Continuous or discrete modeling of a phenomenon

Continuous distribution

Discontinuous distribution

Continuous distribution

Discontinuous distribution

Elevation (m)

Classes of elevation

March 9, 2003
From the phenomenon to the variable ...

- Our objective is to describe and to analyse the spatial distribution of phenomena in the real world
 - At information level, properties of a phenomenon are expressed numerically as values of a / several variable(s)
 - As properties of variables are located into space, variables are called *spatiales variables*
 - For phenomena with considered discrete spatial distribution, corresponding variables are called *discrete spatial variables*
From discrete spatial variable to spatial features

- **Spatial features can be identified in two different manners:**
 - Independently from themes (phenomena) to be described: they are *a priori features*
 - Example: Census or administrative units (districts, regions, ...)
 - As resulting from the spatial distribution (pattern) of properties for a theme (phenomenon): they are *a posteriori features*
 - Example: Landcover units (areal, linear, point units related with this theme)
Predefined spatial features (*a priori*)

Thematically independent

- The study area is splitted into a fixed number of features, regardless of the considered theme.
- This division is set as a framework to collect properties for different themes.
- For each considered theme (phenomenon) global feature properties are collected (*regionalisation process*)

3 features corresponding to Exemplis counties.
Resulting spatial features (*a posteriori*)

Thematically dependent

- The study area is composed with specific number and type of spatial features, related with the considered theme.
- This division is specific to the considered theme.
- The production of resulting spatial features assumes the presence of a very dense spatial sample (point or area) in order to construct such spatial features (*regionalisation process*).
- Obviously such division can then be considered as a set of predefined features for the description of other thematic properties.
Examples of predefined features in a study area

1) Soil features
2) Landcover features
3) Road segments from a network

B-AN / L2
Discrete spatial variables

U1: Introduction

March 9, 2003
2

Spatial features (reminder)
Definition of a spatial feature (1)

- It is a clearly bounded portion of space
- It can express:
 - a unit of observation (of measurement)
 - a unit of exploitation (resulting from a transformation of units of observation, by agregation ou desagregation)
- It can be of 3 types:
 - zonal feature
 - linear feature
 - point feature
Definition of a spatial feature (2)

Its geometric description is a simplification of its real geometry
Definition of a spatial feature (3)

In object mode

- It is the spatial unit of observation / of measurement
- It is geometrically described as:
 - a simple or complex **polygon**, for a zonal feature
 - a **broken line**, for a linear feature
 - a **point**, for a point feature
- Its geometry can be describe with a topological or non topological **structure**
- To its geometrical description is associated a **data table** (containing thematic properties, ...
Definition of a spatial feature (4)

In object mode (continued)

- The level of details (resolution) of its geometrical description is linked to:
 - the description scale of the information source
 - the level of generalization defined by the model of reality
 - the geometrical complexity of each individual feature

- The geometrical resolution is therefore variable and can be adjusted to the complexity of each individual feature
Definition of a spatial feature (5)

In image mode

- It is a set of units of observation / of measurement (the mesh, cell, pixel)
- It is defined as a set of contiguous cells sharing the same thematic property (value)
- It is called a region (zonal, linear or point)
- The thematic property of its components (cells) is stored in the numerical grid:
 - it can express either a true thematic property about the feature or its numerical identification (Id)
Definition of a spatial feature (6)

In image mode (continued)

- The level of detail (resolution) of its spatial description is linked to:
 - the description scale of the information source (document)
 - the level of generalisation decided in the model of reality and applicable to all the layers in the GDB
 - the definition of the cell size (unit of observation)

- The spatial resolution is therefore fixed for all the units of observation (cells) and the whole set of grids (images) in the GDB
Example of spatial features in object and image mode

Object mode
- Point feature
- Linear feature
- Areal feature

Image mode
- Point region
- Linear region
- Areal region

Linear feature
- 1
- 4

Point feature
- 3

Areal feature
- 2

March 9, 2003
3 Structure of the Lesson
Unit 2: Geometrical properties of individual features

Spatial statistics and indices

- Individual geometric properties of features:
 - point features / regions
 - linear features / regions
 - areal features / regions

- Spatial arrangement (pattern) of a set of features
Unit 3: Pattern and neighbourhood of features (space is homogeneous)

Spatio-thematic statistics and indices

- **Spatial distribution of spatio-thematic properties:**
 - point features / regions
 - linear features / regions
 - areal features / regions

- **They combine spatial and thematic properties of features**
Unit 4: Weighted Pattern and neighbourhood of features (space is heterogeneous)

Weighted Spatio-thematic statistics and indices

- **Spatial distribution of spatio-thematic properties:**
 - point features / regions
 - linear features / regions
 - areal features / regions

- **They combine spatial and thematic properties of features**
Diversity of spatial and thematic properties indices

<table>
<thead>
<tr>
<th>Description</th>
<th>Point features</th>
<th>Linear features</th>
<th>Areal features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Spatial</td>
<td>Position: Mean, Median</td>
<td>Connectivity (Beta, Gamma), Accessibility, Directionality (orientation), TDCN index, Density index</td>
<td>Contiguity index (Joint counts), Adjacency matrix, Fragmentation index, Moran index (autocorrelation)</td>
</tr>
<tr>
<td></td>
<td>Dispersion: Stand. dev. in X, in Y, Standard distance, Coefficient of variation in X, in Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arrangement: Nearest neighbour index, Density index, Chi-square (quadrats), Thiessen polygons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Spatio-thematic</td>
<td>Weighted mean, Weighted standard deviation, Fractal Index, Spatial autocorrelation, Variogramme,</td>
<td>Hierarchical tree (Strahler, …), Flow matrix</td>
<td>Association index (Jaccard), Concentration index (Tricot), Autocorrelation index (Geary), Textural indices (ecological)</td>
</tr>
<tr>
<td>Individual</td>
<td>Shape indices: length, sinuosity, directionality</td>
<td>Shape indices: perimeter, area, compactness, gravity centre (weighted)</td>
<td></td>
</tr>
</tbody>
</table>
Unit 5: Regionalization

Feature properties allocation

- From a set of point measurements (sample):
 - assigning a representative property to pre-defined features (labelling)
 - zoning space into features with homogeneous properties (inference)

- For aggregated features
- For desagregated features
What is the thematic property for each feature?

Allocation by labelling

Zoning by inference
Unit 6: Transformation of spatial features

- For aggregation of spatial features
- For breaking up (disintegration) of spatial features
What is the thematic property for each feature?

Agregation by grouping

Desagregation by inference

U1: Introduction
March 9, 2003
Links with
- other Lessons
- other Modules
Links with other Lessons

- **Spatial properties: isotropy, anisotropy**
 - Lesson ?

- **Spatial dependency: autocorrelation**
 - Lesson ?

- **Distance: euclidian (plane), weighted**
 - Lesson ?

March 9, 2003
Links with other Modules

- **Unit of observation:** in object mode, in image mode
 - Module B-SM
- **Sample:** sampling process, methods
 - Module B-DC
- **Dimensions:** thematic, spatial, temporal
 - Module B-SM
End of Unit 1