

Unit 2: Geometrical properties of individual features

- 1: Introduction
- 2: Individual properties (geometry)
- 3: Spatial pattern (relationships)

B-AN / L2 Discrete spatial variables U2: Spatial properties of features

Geographic Information Technology Training Alliance

B-AN / L2 Discrete spatial variables U2: Spatial properties of features

Description of spatial properties (1)

Production of indices describing spatial properties

- Individual spatial properties:
 - Geometry: location, size, shape
- Spatial arrangement of features (pattern):
 - Spatial relationships: distribution, neighborhood, proximity
- Distinction between object mode and image mode:
 - object mode: units of observation are features (object)
 - image mode : regions are features

B-AN / L2 Discrete spatial variables

Description of spatial properties (2)

Described spatial features are models of those from the reality

- Their geometry is simplified:
 - in object mode: through the use of geometrical primitives
 - in image mode: through the choice of a resolution
- Their attributes corresponds to a global thematic property:
 - in object mode: point, linear, areal units
 - in image mode: the set of areal units (cells) composing the region

Description of spatial properties (3)

Descriptors summarize some properties of spatial features

- They are indicators (indices):
 - expressing some properties, not all
 - dependent on the quality of the modeled features
- Such indicators should be considered as estimators of properties:
 - several indicators can express the same property
 - their use and interpretation should be made with sound understanding

Geographic Information Technology Training Alliance

Individual properties of point features

B-AN / L2 Discrete spatial variables

U2: Spatial properties of features

- A point feature is modeled as a geometrical point, it has no spatial dimension (0D)
- In image mode the point region is also considered as spatially dimensionless, despite the fact it is made of an areal spatial unit (the cell)
- Its single individual geometric property is:
 - its location

B-AN / L2 Discrete spatial variables

Point object: Location (position)

- Horizontal (X coordinate) and vertical (Y coordinate)) positions in the projected plane, using a defined coordinate system
- Example:

Location of object i: (251.18m, 139.54m)

B-AN / L2 Discrete spatial variables U2: Spatial properties of features

- Horizontal and vertical position :
 - located at center of the cell (X,Y coordinates)
 - corresponding to the cell position in the grid (column and row)
 - grid resolution dependent

Example:

Location of region i: (251.5m, 139.5m), with a grid resolution of 1m or (7,8) in grid coordinates (column, row)

B-AN / L2 Discrete spatial variables U2: Spatial properties of features

Geographic Information Technology Training Alliance

Individual properties of linear features

B-AN / L2 Discrete spatial variables U2: Spatial properties of features

Linear feature: nature and type

- A linear feature is modeled as a geometrical broken line or a chain, it has one spatial dimension (1D)
- In image mode a linear region is a set of contiguous cells having only one spatial dimension too
- A linear feature can be:
 - simple: made of a single chain
 - complex: made of several chains
- A <u>network</u> can be considered either as:
 - a single feature (complex linear feature)
 - a group of numerous features with <u>connections</u>

B-AN / L2 Discrete spatial variables U2: Spatial properties of features

variables

NIVERSITAS

Linear feature: simple and complex

Linear feature: individual geometric properties

- Only simple linear feature will be discussed here
- Set of linear features such as network will be discussed in Lesson « Network description »
- Individual geometric properties of a linear feature are:
 - its location (position)
 - its size (length)
 - its shape (sinuosity)
 - its orientation (direction)

B-AN / L2 Discrete spatial variables

Linear object: Location

- Generally its location is considered as the horizontal and vertical position into the project plane of its Mean center (MC) or so called Gravity center
- Example:

Point	X	Y
1	247	133.5
2	251.5	136
3	256	133
4	263	137
Σ	1017.5	539.5
MC	254.4	134.9

B-AN / L2 Discrete spatial variables U2: Spatial properties of features

Linear object: Size (length)

- It is the sum of length of the n segments composing the chain:
 - $L = \Sigma Ds_i$
 - with: D_{s_i} = distance between the two segment i ends (vertices)
- Exemple:

Segment	ΔX	Δy	ΔX^2	Δy^2	$\Delta x^2 + \Delta y^2$	Ds _i
1	4.5	2.5	20.25	6.25	26.5	5.15
2	4.5	3	20.25	9	29.25	5.41
3	7	4	49	16	65	8.06
					Σ s _i =	18.62

B-AN / L2 Discrete spatial variables

Linear region: Size (length)

• It is the sum of length of the n units (cells) composing the region:

This metric uses 2 yardsticks :

diagonal = 1.41 unit, side = 1 unit

Example:

Let a grid with 1m resolution:

L = ((10*1.41)+(5*1))*1m = 19.1m

In image mode the estimation of length is systematically exaggerated (see the estimation in object mode: L = 18.62m)

B-AN / L2 Discrete spatial variables U2: Spatial properties of features

1 6

Linear object: Shape (sinuosity)

 It is the ratio between the chain length L and the distance D_{df} between its two ends:

 $S = L / D_{df}$

• Interpretation:

S is a ratio, with S >=1

• Example:

ΔX	ΔУ	ΔX^2	Δy^2	$\Delta x^2 + \Delta y^2$	D _{df}
16	3.5	256	12.25	268.25	16.38

```
L = 5.15+5.41+8.06 = 18.62
D<sub>df</sub> = 16.38
```

S = 18.62 / 16.38 = 1.14

B-AN / L2 Discrete spatial variables

Linear region: Shape (sinuosity)

20 It is the ratio between the region 147 length L and the distance D_{df} between its 2 ends: $S = L / D_{df}$ Coordinate Y Interpretation: **D**df 137 S is a ratio, with $S \ge 1$ Example: L = ((10*1.41)+(5*1))*1m = 19.1m $D_{df} = ((4*1.41)+(11*1))*1m = 16.64m$ 20 127 -245 255 265 S = 19.1 / 16.64 = 1.15Coordinate X As these 2 terms L and D_{df} use the same metric, the resulting value S is close S = 19.1 / 16.64 = 1.15to the one obtained in object mode (S = 1.14)

B-AN / L2 Discrete spatial variables U2: Spatial properties of features

• It is the angle of the main direction of the chain with respect to the vertical

the main direction and the vertical cross at the Mean center (MC)

• Example:

Chain direction:

 $\tau = 56^{\circ}$

It is the same chain as in previous illustration, except its direction is different

B-AN / L2 Discrete spatial variables

Geographic Information Technology Training Alliance

Individual properties of areal features

B-AN / L2 Discrete spatial variables U2: Spatial properties of features

Areal feature: nature and type

- An areal object is modeled as a geometrical closen chain (polygon), it has 2 spatial dimensions (2D)
- In image mode the areal region is made of a set of contiguous cells having 2 spatial dimensions
- An areal feature can be:
 - simple: made of a single polygon or region
 - complex: made of several polygons (with inner or outer area: *island*)

B-AN / L2 Discrete spatial variables

UNIVERSITAS

Areal object: simple and complex

Areal feature: individual properties

- Only simple areal features will be discussed here
- Individual geometric properties of an areal feature are:
 - its location (position)
 - its size (perimeter, area)
 - its shape (compactness)

B-AN / L2 Discrete spatial variables

- Horizontal and vertical position in the projected plane of its Mean center (MC), or so called gravity center
- Example:

Point	X	Y
1	248	138
2	252	143
3	262	142
4	263	133
5	255	132
Σ	1280	688
СМ	256	137.6

B-AN / L2 Discrete spatial variables U2: Spatial properties of features

Areal object: Size (perimeter)

- It is the sum of length of the n segments composing the chain:
 - $L = \Sigma Ds_i$
 - with: D_{s_i} = distance between the two segment i ends (vertices)

Example:

Segment	ΔX	ΔУ	ΔX^2	Δy^2	$\Delta x^2 + \Delta y^2$	Ds _i
1	4	5	16	25	41	6.4
2	10	1	100	1	101	10
3	1	9	1	81	82	9
4	8	1	64	1	65	8.1
5	7	6	49	36	85	9.2
					$\sum s_i =$	42.7

B-AN / L2 Discrete spatial variables

Areal region: Size (perimeter)

The perimeter can be evaluated with 2 different techniques:

- External perimeter of the region (envelop) :
 - staircase effect using "Manhattan distance"
 - systematic over estimation of the perimeter
- Length of the linear region edge (linear perimeter) :
 - reduced staircase effect by taking the diagonal distance into account
 - under estimation of the perimeter with a too coarse resolution

These two estimation are dependent on the metric used and the grid resolution

B-AN / L2 Discrete spatial variables

Areal region: Size (perimeter of the envelop)

It is the sum of length of the n 147 cells bounding the region : This metric uses 2 yardsticks: diagonal = 1.41 unit, side = 1 unit Coordinate Y Example: 137 Let a grid with 1m resolution (unit): 1+1+1+1+1 41+1+1+1+1 41+1+1+1+1+1+1+1+1 41+1+1+1 41+1 41+11 41+1+1 41+1 41 127 -L = ((11*1.41)+(24*1))*1m = 39.51m245 The estimation of perimeter using this technique is close to the one in object mode (L = 42.7m)

2

8

B-AN / L2 Discrete spatial variables

Areal object: Size (area)

There are several techniques to estimate the area of an object:

- For non generalized features (eg. features manually delineated on a map or an image):
 - random or regular point sampling technique (Unwin D., 1981, p.126)
 - assuming objects are already generalized into polygons, this technique will not be discussed here

 For areal objects numerically described with polygons (for a GDB in object mode):

- by breaking up into triangles
- by breaking up into rectangles (computer algorithm)

B-AN / L2 Discrete spatial variables U2: Spatial properties of features

Areal object: Size (area) - split into triangles

• The area of polygon A_p is the sum of areas of its composing triangles A_{ti} :

 $A_{p} = \sum A_{ti}$ with: $A_{ti} = (B^{*}h) / 2$, B the basis and h the height

• Example:

Triangle	Basis	Height	Вхh	Area _{ti}
1	14.5	3.7	53.65	26.82
2	14.5	7.7	111.65	55.82
3	12.3	6	73.8	36.9
			$\Sigma A_{ti} =$	119.54

A_p = 26.82+55.82+36.9 = 119.54m²

B-AN / L2 Discrete spatial variables

(252, 143)

5

255

Coordinate X

 $A = 0.5 * 239 = 119.5m^2$

(255, 132)

(262, 142)

(263, 133)

265

Areal object: Size (area) - split into rectangles

• Example:

Xi	Y _i	Contribution	
248	138	138(252-255) = -414	
252	143	143(262-248) = 2002	
262	142	142(263-252) = 1562	
263	133	133(255-262) = -931	
255	132	132(248-263) = -1980	
	Σ contributions = 23		

A = 0.5 * 239 = 119.5m²

B-AN / L2 Discrete spatial variables U2: Spatial properties of features

April 8, 2003

147

137-

127-

245

(248, 138)

Coordinate Y

Areal region: Size (area)

It is the sum of areas of cells composing the region:

 $A = n * A_{...}$

with A_u constant for the n units

Example:

Let a grid with 1m² resolution (unité):

In image mode, estimation of the the area is close to the one in object mode: (A = 119.5m²)

B-AN / L2 Discrete spatial variables

U2: Spatial properties of features

Areal feature: Shape (indices)

The shape of areal features is a very rich concept that is difficult to summarize with a single index

- Such indices should allow the comparison between features:
 - independant of the description scale and the size of features
 - with a reference to a particular shape

This index should be a ratio with at least one reference value

B-AN / L2 Discrete spatial variables

Areal feature: Shape (compactness indices)

Among the numerous indices proposed in the literature, those describing the compactness of the shape

- Counter-example: perimeter / area index (P/A)
 - it is simple to produce (based on size indices)
 - but its value is dependent on the unit of measurement as well as on the size of features. its use is therefore strongly limited for the comparison of features compactness
- A compactness index refers to a geometrically compact shape, such as a circle or sometimes a square

B-AN / L2 Discrete spatial variables U2: Spatial properties of features

Basic elements for compactness indices

B-AN / L2 Discrete spatial variables

Most usual compactness indices are made of:

- The ratio between the feature area and the area of its smallest circumscribing circle :
 - $S_{A,C} = A / C$
- The ratio between the feature area and the area of a circle having the major axis length L as perimeter :
 - $S_{A,L} = A / \pi (0.5 L)^2 = 1.27 A / L^2$
- The ratio between the largest inscribed circle area and the area of its smallest circumscribing circle :
 - $S_{I,C} = I / C$

B-AN / L2 Discrete spatial variables

U2: Spatial properties of features

Some other indices derived :

- From the ratio between the feature area and the area of its smallest circumscribing circle :
 - $S'_{A,C} = \sqrt{(A / C)}$ $Sr_{A,C} = R_A / R_C$, with $R_A = \sqrt{(A / \pi)}$
- From the ratio between the largest inscribed circle area and the area of its smallest circumscribing circle :
 - $Sr_{I,C} = R_I / R_C$
- From the ratio between the minor and the major axis:
 - S_{I,L} = I / L

with I being the minor axis, perpendicular to the major axis

B-AN / L2 Discrete spatial variables U2: Spatial properties of features

Areal feature: Compactness indices (continued)

And some easily computable indices

- Some basic elements involved in the computation of compactness are difficult or tedious to produce for irregular features:
 - particularly inscribed and circumscribing radius
- In numerous GIS software proposed compactness indices are therefore computed as follow:
 - S_{A,Cp} = A / Cp , with Cp as the area of a circle having the same perimeter as the feature
 - S_{A,Q} = A / Q , with Q as the area of a circumscribing square with a side length equal to L

B-AN / L2 Discrete spatial variables

Areal feature: Compactness indices - Comparison

Indices	Formula	Circle	Oriented square	Irregular polygon
S _{A,C}	= A/C	= 1	= 0.64	= 119.5 / 201.06 = 0.59
S _{A,L}	= 1.27 A/L ²	= 1	= 0.64	= 119.5 / 196.07 = 0.61
S _{I,C}	= I/C	= 1	= 0.5	= 81.7 / 201.6 = 0.41
S' _{A,C}	= √(A/C)	= 1	= 0.8	= (119.5 / 201.06) ^{0.5} = 0.77
Sr _{A,C}	$= R_i / R_c$	= 1	= 0.71	= 5.1 / 8 = 0.64
SI,L	= I/L	= 1	= 1	= 10.9 / 15.8 = 0.69
S _{A,Cp}	$= A/C_p$	= 1	= 0.71	= 119.5 / 144.3 = 0.83
S _{A,Q}	= A/Q	= 0.78	= 0.5	= 119.5 / 15.8 ² = 0.48

Characteristics of the irregular polygon (illustration of the areal object): A = 119.5, L = 15.8, I = 10.9, P = 42.7, C= 201.06, $R_c = 8$, $R_I = 5.1$

B-AN / L2 Discrete spatial variables

Areal feature: Compactness indices - Comments

- All these indices express the relative compactness of a feature with respect to a compact shape of reference
- For all except the last index, the reference is a circular shape :
 - the maximum value 1 expresses a maximal compactness
 - the lesser the compactness of the polygon, the lower the index value
- Each index expresses differently the discrepancy between the feature shape and the reference shape
 - It is therefore important to master the meaning of index values

Areal feature: Compactness indices - References

Suggested references

Baker L., : Davis P., : Ebdon D., : Fitzgerald B., : Hammond, Mc Cullagh, : Unwin D., : Idrisi (Cratio) : ArcGIS :

B-AN / L2 Discrete spatial variables

5 Arrangement spatial des objets ponctuels

B-AN / L2 Discrete spatial variables U2: Spatial properties of features

Geographic Information Technology Training Alliance

B-AN / L2 Discrete spatial variables U2: Spatial properties of features

