Unit 2: Geometrical properties of individual features

1: Introduction
2: Individual properties (geometry)
3: Spatial pattern (relationships)

Introduction

Description of spatial properties (1)
Production of indices describing spatial properties

- Individual spatial properties:
- Geometry: location, size, shape
- Spatial arrangement of features (pattern):
- Spatial relationships: distribution, neighborhood, proximity
- Distinction between object mode and image mode:
- object mode: units of observation are features (object)
- image mode : regions are features

Description of spatial properties (2)

Described spatial features are models of those from the reality

- Their geometry is simplified:
- in object mode: through the use of geometrical primitives
- in image mode: through the choice of a resolution
- Their attributes corresponds to a global thematic property:
- in object mode: point, linear, areal units
- in image mode: the set of areal units (cells) composing the region

Description of spatial properties (3)

Descriptors summarize some properties of spatial features

- They are indicators (indices):
- expressing some properties, not all
- dependent on the quality of the modeled features
- Such indicators should be considered as estimators of properties:
- several indicators can express the same property
- their use and interpretation should be made with sound understanding

Individual properties of point features

Point features: individual properties

- A point feature is modeled as a geometrical point, it has no spatial dimension (OD)
- In image mode the point region is also considered as spatially dimensionless, despite the fact it is made of an areal spatial unit (the cell)
- Its single individual geometric property is:
- its location

Point object: Location (position)

- Horizontal (X coordinate) and vertical (Y coordinate) positions in the projected plane, using a defined coordinate system
- Example:

Location of object i :
(251.18m, 139.54m)

Point region: Location (position)

- Horizontal and vertical position :
- located at center of the cell (X,Y coordinates)
- corresponding to the cell position in the grid (column and row)
- grid resolution dependent
- Example:

Location of region i :
(251.5m, 139.5m), with a grid resolution of 1 m
or $(7,8)$ in grid coordinates (column, row)

Individual properties of linear features

U2: Spatial properties Discrete spatial of features

Linear feature: nature and type

- A linear feature is modeled as a geometrical broken line or a chain, it has one spatial dimension (1D)
- In image mode a linear region is a set of contiguous cells having only one spatial dimension too
- A linear feature can be:
- simple: made of a single chain
- complex: made of several chains

A network can be considered either as:

- a single feature (complex linear feature)
- a group of numerous features with connections

Linear feature: simple and complex

Simple linear object

- Object made of a single chain (C_{1})
- Example: a segment

- vertex
\square nod

Complex linear object

- Object made of several chains ($\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{n}}$)
- Example: a set of segments, a whole network

U2: Spatial properties

Linear feature: individual geometric properties

- Only simple linear feature will be discussed here
- Set of linear features such as network will be discussed in Lesson « Network description»
- Individual geometric properties of a linear feature are:
- its location (position)
- its size (length)
- its shape (sinuosity)
- its orientation (direction)

U2: Spatial properties

Linear object: Location

- Generally its location is considered as the horizontal and vertical position into the project plane of its Mean center (MC) or so called Gravity center
- Example:

Point	X	Y
1	247	133.5
2	251.5	136
3	256	133
4	263	137
Σ	1017.5	539.5
MC	254.4	134.9

U2: Spatial properties of features

Linear object: Size (length)

- It is the sum of length of the n segments composing the chain:
$L=\Sigma D_{s_{i}}$
with: $\mathrm{Ds}_{\mathrm{i}}=$ distance between the two segment i ends (vertices)
- Exemple:

Segment	$\Delta \mathrm{x}$	$\Delta \mathrm{y}$	$\Delta \mathrm{x}^{2}$	$\Delta \mathrm{y}^{2}$	$\Delta \mathrm{x}^{2}+\Delta \mathrm{y}^{2}$	Ds_{i}
1	4.5	2.5	20.25	6.25	26.5	5.15
2	4.5	3	20.25	9	29.25	5.41
3	7	4	49	16	65	8.06
					$\Sigma \mathrm{~s}_{\mathrm{i}}=$	18.62

U2: Spatial properties

Linear region: Size (length)

- It is the sum of length of the n units (cells) composing the region:

This metric uses 2 yardsticks:
diagonal $=1.41$ unit, side $=1$ unit

- Example:

Let a grid with 1 m resolution:

$$
\begin{aligned}
\mathrm{L}= & 1.41+1.41+1+1+1+1.41+1.41+1 \\
& 41+1.41+1.41+1+1.41+1+1.41+ \\
& 1.41 \\
\mathrm{~L}= & \left(\left(10^{*} 1.41\right)+\left(5^{*} 1\right)\right)^{*} 1 \mathrm{~m}=19.1 \mathrm{~m}
\end{aligned}
$$

In image mode the estimation of length is systematically exaggerated (see the estimation in object mode: $L=18.62 \mathrm{~m}$)

U2: Spatial properties of features

Linear object: Shape (sinuosity)

- It is the ratio between the chain length L and the distance $D_{d f}$ between its two ends:

$$
\mathrm{S}=\mathrm{L} / \mathrm{D}_{\mathrm{df}}
$$

- Interpretation:
S is a ratio, with $S>=1$
- Example:

$\Delta \mathrm{x}$	$\Delta \mathrm{y}$	$\Delta \mathrm{x}^{2}$	$\Delta \mathrm{y}^{2}$	$\Delta \mathrm{x}^{2}+\Delta \mathrm{y}^{2}$	D_{df}
16	3.5	256	12.25	268.25	16.38

$L=5.15+5.41+8.06=18.62$
$D_{d f}=16.38$
$S=18.62 / 16.38=1.14$

Linear region: Shape (sinuosity)

- It is the ratio between the region length L and the distance $D_{d f}$ between its 2 ends:

$$
\mathrm{S}=\mathrm{L} / \mathrm{D}_{\mathrm{df}}
$$

- Interpretation:
S is a ratio, with $S>=1$
- Example:
$L=\left(\left(10^{*} 1.41\right)+(5 * 1)\right)^{*} 1 \mathrm{~m}=19.1 \mathrm{~m}$
$D_{\text {df }}=\left(\left(4^{*} 1.41\right)+\left(11^{*} 1\right)\right)^{*} 1 \mathrm{~m}=16.64 \mathrm{~m}$
$S=19.1 / 16.64=1.15$
As these 2 terms L and $D_{\text {df }}$ use the same metric, the resulting value S is close to the one obtained in object mode (S $=1.14)$

U2: Spatial properties
Discrete spatia of features

April 8, 2003

Linear object: Orientation (direction)

- It is the angle of the main direction of the chain with respect to the vertical
the main direction and the vertical cross at the Mean center (MC)
- Example:

Chain direction:
$\tau=56^{\circ}$
It is the same chain as in previous illustration, except its direction is different

Individual properties of areal features

Areal feature: nature and type

- An areal object is modeled as a geometrical closen chain (polygon), it has 2 spatial dimensions (2D)
- In image mode the areal region is made of a set of contiguous cells having 2 spatial dimensions
- An areal feature can be:
- simple: made of a single polygon or region
- complex: made of several polygons (with inner or outer area: island)

Areal object: simple and complex

Simple areal object

- Object made of a single polygon (closed chain)

Convex

chain C_{1}

Concave

chain C_{1}

- vertex
- nod

Complex areal object

- Object made of several polygons (closed chains)
- Example: object with inner and outer area (islands)

chain C_{1}

Areal feature: individual properties

- Only simple areal features will be discussed here
- Individual geometric properties of an areal feature are:
- its location (position)
- its size (perimeter, area)
- its shape (compactness)

Objet zonal: Location (position)

- Horizontal and vertical position in the projected plane of its Mean center (MC), or so called gravity center
- Example:

Point	X	Y
1	248	138
2	252	143
3	262	142
4	263	133
5	255	132
Σ	1280	688
CM	256	137.6

U2: Spatial properties

Areal object: Size (perimeter)

- It is the sum of length of the n segments composing the chain:
$L=\Sigma D_{s_{i}}$
with: $\mathrm{Ds}_{\mathrm{i}}=$ distance between the two segment i ends (vertices)
- Example:

Segment	$\Delta \mathrm{x}$	$\Delta \mathrm{y}$	$\Delta \mathrm{x}^{2}$	$\Delta \mathrm{y}^{2}$	$\Delta \mathrm{x}^{2}+\Delta \mathrm{y}^{2}$	$\mathrm{Ds} \mathrm{s}_{\mathrm{i}}$
1	4	5	16	25	41	6.4
2	10	1	100	1	101	10
3	1	9	1	81	82	9
4	8	1	64	1	65	8.1
5	7	6	49	36	85	9.2
					$\Sigma \mathrm{~s}_{\mathrm{i}}=$	42.7

U2: Spatial properties

Areal region: Size (perimeter)

The perimeter can be evaluated with 2 different techniques:

- External perimeter of the region (envelop) :
- staircase effect using "Manhattan distance"
- systematic over estimation of the perimeter
- Length of the linear region edge (linear perimeter) :
- reduced staircase effect by taking the diagonal distance into account
- under estimation of the perimeter with a too coarse resolution

These two estimation are dependant on the metric used and the grid resolution

Areal region: Size (perimeter of the envelop)

- It is the sum of length of the n cell sides bounding the region:

This metric distance is often called
Manhattan
yardstick: side = 1 unit

- Example:

Let a grid with 1 m resolution (unit):
$L=(50 * 1) * 1 m=50 m$
In image mode, the use of this metric tends to over estimate the measure of perimeter (see estimation in object mode: $L=42.7 \mathrm{~m}$)

Areal region: Size (linear perimeter)

- It is the sum of length of the n cells bounding the region :

This metric uses 2 yardsticks: diagonal $=1.41$ unit, side $=1$ unit

- Example:

Let a grid with 1 m resolution (unit):
$\mathrm{L}=1.41+1.41+1+1.41+1+1+1+1+1+1+$ $1+1+1+1+1.41+1+1+1+1.41+1+1+$ $1+1+1+1+1+1.41+1+1+1.41+1.41+$ $1.41+1+1.41+1.41$
$\mathrm{L}=\left(\left(11^{*} 1.41\right)+\left(24^{*} 1\right)\right)^{*} 1 \mathrm{~m}=39.51 \mathrm{~m}$
The estimation of perimeter using this technique is close to the one in object mode ($\mathrm{L}=42.7 \mathrm{~m}$)

U2: Spatial properties

Areal object: Size (area)

There are several techniques to estimate the area of an object:

- For non generalized features (eg. features manually delineated on a map or an image):
- random or regular point sampling technique (Unwin D., 1981, p.126)
- assuming objects are already generalized into polygons, this technique will not be discussed here
- For areal objects numerically described with polygons (for a GDB in object mode):
- by breaking up into triangles
- by breaking up into rectangles (computer algorithm)

Areal object: Size (area) - split into triangles

- The area of polygon A_{p} is the sum of areas of its composing triangles A_{ti} :

$$
A_{p}=\Sigma A_{t i}
$$

with: $A_{t i}=\left(B^{* h}\right) / 2$,
B the basis and h the height

- Example:

Triangle	Basis	Height	$\mathrm{B} \times \mathrm{h}$	Area $_{\mathrm{ti}}$
1	14.5	3.7	53.65	26.82
2	14.5	7.7	111.65	55.82
3	12.3	6	73.8	36.9
			$\Sigma \mathrm{~A}_{\mathrm{ti}}=$	119.54

$A_{p}=26.82+55.82+36.9=119.54 \mathrm{~m}^{2}$

$$
A_{p}=26.82+55.82+36.9=119.54 \mathrm{~m}^{2}
$$

Areal object: Size (area) - split into rectangles

This technique is adapted for a numerical vector structure (GDB)

Assuming polygon vertices are sequentially described clockwise from a given starting point:

$$
A=0.5^{*} \Sigma y_{i}\left(x_{i+1}-x_{i-1}\right)
$$

- Example:

X	Y_{i}	Contribution
248	138	$138(252-255)=-414$
252	143	$143(262-248)=2002$
262	142	$142(263-252)=1562$
263	133	$133(255-262)=-931$
255	132	$132(248-263)=-1980$
	\sum contributions $=$	

$A=0.5 * 239=119.5 \mathrm{~m}^{2}$

U2: Spatial properties

Areal region: Size (area)

- It is the sum of areas of cells composing the region:
$\mathrm{A}=\mathrm{n}$ * A_{u}
with A_{u} constant for the n units
- Example:

Let a grid with $1 \mathrm{~m}^{2}$ resolution (unité):
$A=110 * 1 \mathrm{~m}^{2}=110 \mathrm{~m}^{2}$

In image mode, estimation of the the area is close to the one in object mode: ($\mathrm{A}=$ $119.5 \mathrm{~m}^{2}$)

Areal feature: Shape (indices)

The shape of areal features is a very rich concept that is

 difficult to summarize with a single index- Such indices should allow the comparison between features:
- independant of the description scale and the size of features
- with a reference to a particular shape
\Rightarrow This index should be a ratio with at least one reference value

U2: Spatial properties

Areal feature: Shape (compactness indices)

Among the numerous indices proposed in the literature, those describing the compactness of the shape

- Counter-example: perimeter / area index (P/A)
- it is simple to produce (based on size indices)
- but its value is dependant on the unit of measurement as well as on the size of features. its use is therefore strongly limited for the comparison of features compactness
\Rightarrow A compactness index refers to a geometrically compact shape, such as a circle or sometimes a square

Basic elements for compactness indices

- For the concerned feature:

A : area of the feature
L : major axis (distance between the 2 most faraway vertices of the feature)

- For the reference feature (circle):
C : area of smallest circumscribing circle
R_{C} : radius of smallest circumscribing circle
I : area of largest inscribed circle
R_{l} : radius of largest inscribed circle
- Example:

$$
\begin{array}{ll}
\mathrm{A}=119.5 \mathrm{~m}^{2} & \mathrm{~L}=\mathrm{D}_{1,4}=15.8 \mathrm{~m} \\
\mathrm{R}_{\mathrm{C}}=8 \mathrm{~m} & \mathrm{C}=\pi \mathrm{R}^{2}=201.06 \mathrm{~m}^{2} \\
\mathrm{R}_{\mathrm{l}}=5.1 \mathrm{~m} & \mathrm{I}=\pi \mathrm{R}^{2}=81.71 \mathrm{~m}^{2}
\end{array}
$$

Areal feature: Compactness indices

Most usual compactness indices are made of:

- The ratio between the feature area and the area of its smallest circumscribing circle :
- $\mathrm{S}_{\mathrm{A}, \mathrm{C}}=\mathrm{A} / \mathrm{C}$
- The ratio between the feature area and the area of a circle having the major axis length L as perimeter :
- $\mathrm{S}_{\mathrm{A}, \mathrm{L}}=\mathrm{A} / \pi(0.5 \mathrm{~L})^{2}=1.27 \mathrm{~A} / \mathrm{L}^{2}$
- The ratio between the largest inscribed circle area and the area of its smallest circumscribing circle :
- $S_{I, C}=1 / C$

Areal feature: Compactness indices (continued)

Some other indices derived:

- From the ratio between the feature area and the area of its smallest circumscribing circle :
- $S_{A, C}^{\prime}=\sqrt{ }(A / C) \quad S_{A, C}=R_{A} / R_{C}$, with $R_{A}=\sqrt{ }(A / \pi)$
- From the ratio between the largest inscribed circle area and the area of its smallest circumscribing circle :
- $\mathrm{Sr}_{1, \mathrm{C}}=\mathrm{R}_{\mathrm{l}} / \mathrm{R}_{\mathrm{C}}$
- From the ratio between the minor and the major axis:
- $S_{I, L}=I / L$
with I being the minor axis, perpendicular to the major axis

Areal feature: Compactness indices (continued)

And some easily computable indices

- Some basic elements involved in the computation of compactness are difficult or tedious to produce for irregular features:
- particularly inscribed and circumscribing radius
- In numerous GIS software proposed compactness indices are therefore computed as follow:
- $S_{A, C p}=A / C p$, with $C p$ as the area of a circle having the same perimeter as the feature
- $S_{A, Q}=A / Q$, with Q as the area of a circumscribing square with a side length equal to L

Areal feature: Compactness indices - Comparison

Indices	Formula	Circle	Oriented square	Irregular polygon
$\mathrm{S}_{\mathrm{A}, \mathrm{C}}$	= A/C	$=1$	$=0.64$	$=119.5 / 201.06=0.59$
$\mathbf{S}_{\text {A, }, ~}$	$=1.27 \mathrm{~A} / \mathrm{L}^{2}$	= 1	$=0.64$	$=119.5 / 196.07=0.61$
$\mathrm{S}_{\mathrm{I}, \mathrm{C}}$	= I/C	= 1	$=0.5$	= $81.7 / 201.6=0.41$
$S^{\prime}{ }_{\text {A }, C}$	$=\sqrt{ }(\mathrm{A} / \mathrm{C})$	= 1	$=0.8$	$=(119.5 / 201.06)^{0.5}=0.77$
$\mathbf{S r}_{\text {A,C }}$	$=\mathrm{R}_{\mathrm{i}} / \mathrm{R}_{\mathrm{c}}$	= 1	$=0.71$	$=5.1 / 8=0.64$
$\mathrm{S}_{\mathrm{l}, \mathrm{L}}$	$=1 / L$	$=1$	= 1	$=10.9 / 15.8=0.69$
$\mathrm{S}_{\mathrm{A}, \mathrm{Cp}}$	$=\mathrm{A} / \mathrm{C}_{\mathrm{p}}$	= 1	$=0.71$	$=119.5 / 144.3=0.83$
$\mathrm{S}_{\mathrm{A}, \mathrm{Q}}$	= A/Q	$=0.78$	$=0.5$	$=119.5 / 15.8^{2}=0.48$

Characteristics of the irregular polygon (illustration of the areal object):
$A=119.5, L=15.8, I=10.9, P=42.7, C=201.06, R_{C}=8, R_{I}=5.1$

Areal feature: Compactness indices - Comments

All these indices express the relative compactness of a feature with respect to a compact shape of reference

- For all except the last index, the reference is a circular shape:
- the maximum value 1 expresses a maximal compactness
- the lesser the compactness of the polygon, the lower the index value
- Each index expresses differently the discrepancy between the feature shape and the reference shape
- It is therefore important to master the meaning of index values

Areal feature: Compactness indices - References

Suggested references

Baker L., :
Davis P., :
Ebdon D., :
Fitzgerald B., :
Hammond, Mc Cullagh, :
Unwin D., :
Idrisi (Cratio) :
ArcGIS :

Arrangement spatial des objets ponctuels

Fin de l‘ Unite

