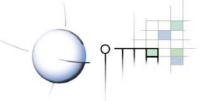

Unit 3: Pattern and neighborhood of spatial features


- **A:** Introduction
- **B:** Spatial pattern and neighborhood (relationships)
 - for point features
 - for linear features
 - for areal features

B-AN / L2 Discrete spatial variables

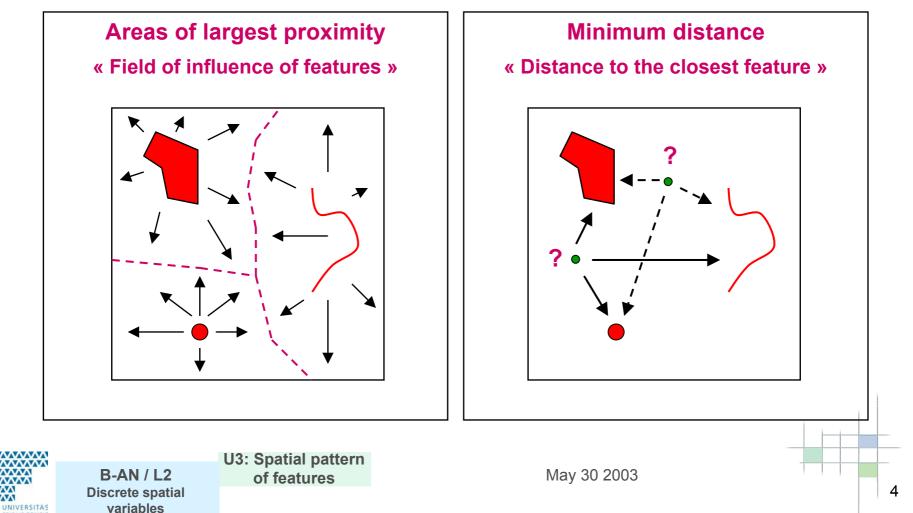
U3: Spatial pattern of features

Geographic Information Technology Training Alliance

B-AN / L2 Discrete spatial variables U3: Spatial pattern of features

Spatial pattern and neighborhood

- Concepts of pattern and neighborhood are complex:
 - Only few properties will be considered: central location, dispersion, contiguity, distance, proximity
- Different models of space can be related with these concepts:
 - Plane isotropic space: homogeneous space, plane distance
 - Skew isotropic space: heterogeneous space, weighted distance
 - <u>Skew anisotropic space</u>: heterogeneous space with variable properties, weighted directionnal distance


Only the plane isotropic space will be considered in this Unit

B-AN / L2 Discrete spatial variables U3: Spatial pattern of features

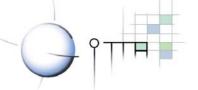
Proximity and distance

Concepts of largest proximity and minimum distance

Model of space: Plane isotropic space

- Properties within the whole space are either homogeneous or not considered:
 - only the spatial dimension is taken into account
- Only concepts of plane geometry (euclidian) are used to describe the spatial pattern and neighborhood of features:
 - central location, dispersion
 - proximity: plane distance (horizontal, euclidian)

- Space is modeled as homogeneous and plane, expressing the homogeneity of its properties
- In fact properties are ignored: the thematic dimension is not considered


0

B-AN / L2 Discrete spatial variables U3: Spatial pattern of features

May 30 2003

Х

Description of spatial pattern and neighborhood

Proposed indices of pattern and

Indices	Place Space DOMOC	OO Weighted space
	spatial dimension	spatio-thematic dimension
Location	Mean, median centers	Weighted mean center
Dispersion	Standard deviations, interquartiles,	Weighted standard deviation
	standard distance, R index	_
Proximity	Plane distance, areas of largest	Weighted distance, areas of
	proximity	largest weighted proximity

Indices and statistics of spatial pattern and neighborhood are presented according to the type of spatial features:

point

B-AN / L2

variables

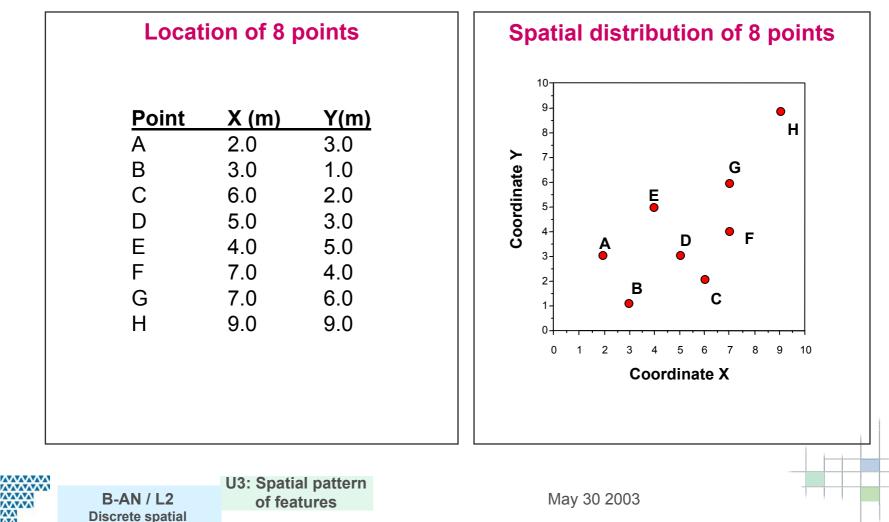
linear **U3: Spatial pattern** of features Discrete Spars

Spatial pattern and neighborhood of point features

B-AN / L2 Discrete spatial variables U3: Spatial pattern of features

Different indicators for the spatial distribution and relationships of point features

- Spatial distribution description:
 - statistical indices of location: central tendency
 - statistical indices of dispersion: variability
- Spatial pattern description:
 - index of spatial pattern
- **Neighborhood relationships description:**
 - distance to features, areas of largest proximity


U3: Spatial pattern of features

Point features : Example of a distribution

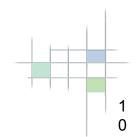
variables

UNIVERSITAS

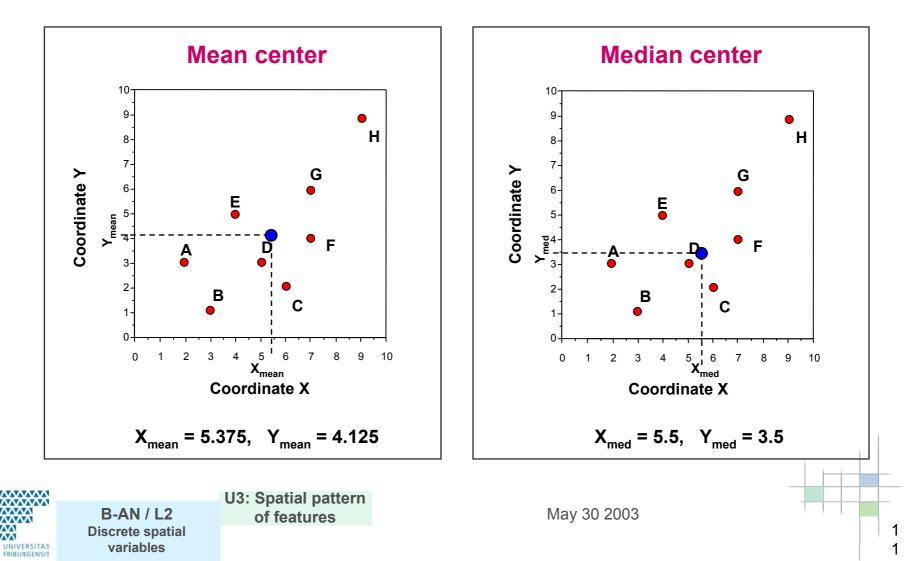
Point features : Indices of central tendency

Based on the mean and median of X and Y coordinates

• Mean center MC (X, Y) or (x_{mean}, y_{mean}) :


$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_{i}$$
 $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_{i}$

- it is the center of gravity or barycenter of the distribution
- Median center C_{med} :


Location of coordinates $(X_{méd}, Y_{méd})$

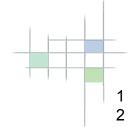
B-AN / L2 Discrete spatial variables U3: Spatial pattern of features

Point features : Indices of central tendency

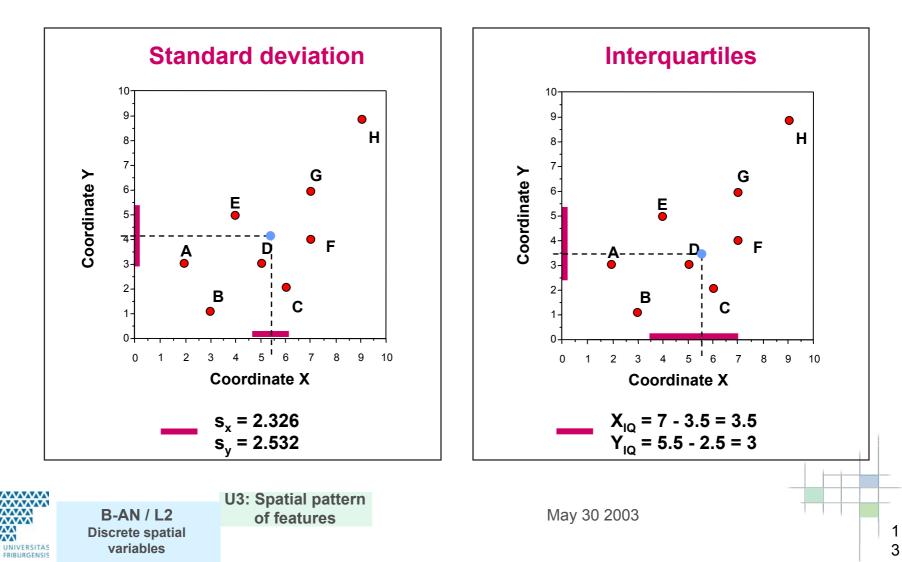
Point features : Indices of dispersion

Based on standard deviations and quartiles of X and Y coordinates

Standard deviation of X s_x and Y s_y:



Interquartile of X x_{IQ} and Y y_{IQ} :


$$X_{IQ} = Q_3 - Q_1$$
 $Y_{IQ} = Q_3 - Q_1$

with: Q_1 the first quartile and Q_3 the third one

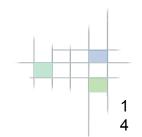
B-AN / L2 Discrete spatial variables U3: Spatial pattern of features

Point features : Indices of dispersion

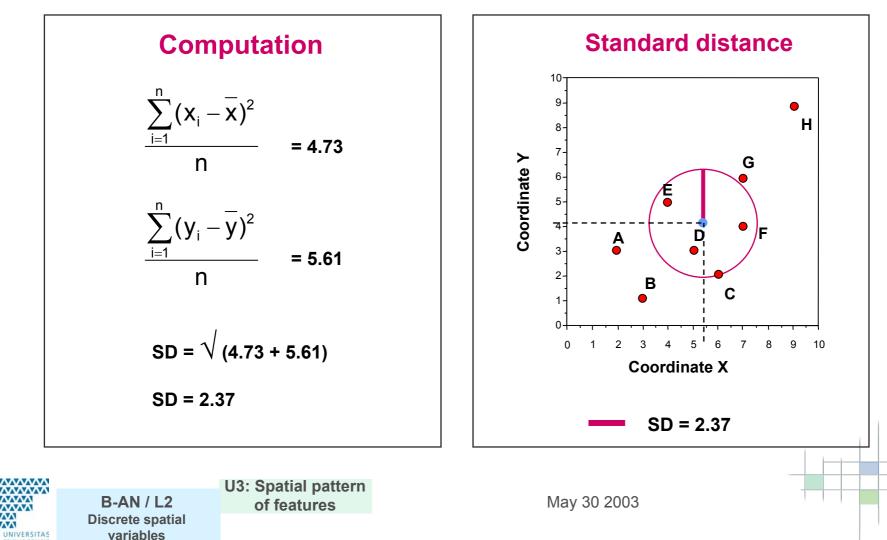
Point features : Global index of dispersion

Based on the combined dispersion of X and Y coordinates

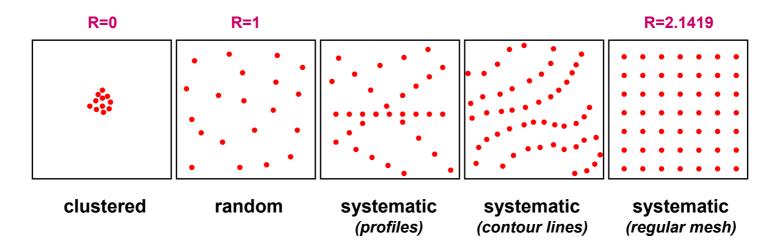
• Standard Distance SD (Bachi distance) :


$$DS = \sqrt{\frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2} + \sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}{n}}$$

• It is a measure of the the combined dispersion in X and Y directions, with reference to the mean center

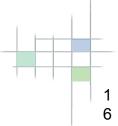

Corriger DS dans équation !

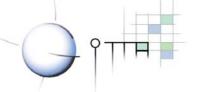
B-AN / L2 Discrete spatial variables U3: Spatial pattern of features



Point features : Standard distance

Point features : Spatial pattern index


Typology of point spatial distributions



Objective: Production of an index expressing these distribution differences

B-AN / L2 Discrete spatial variables U3: Spatial pattern of features

 $\frac{d}{\bar{d}_{al}}$

Point features : Nearest neighbor R index

The nearest neighbor R index compares the observed distribution of points with a theoretically random one.

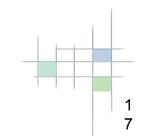
It is a ratio

R Index :

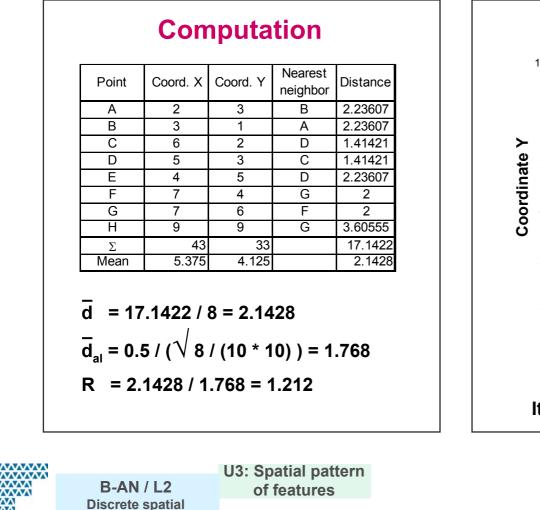
Mean distance between pairs of points sample **R** = Mean distance for a random distribution

• Mean distance in the observed distribution:

 $\overline{d} = \frac{1}{n} \sum_{i} d_{i}$ d_i = distance from point i to its nearest neighbor

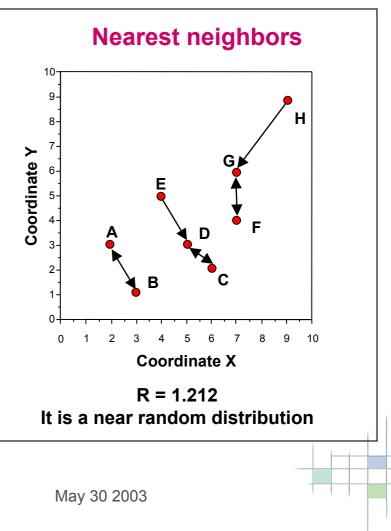

Mean distance in the random distribution :

 $\overline{d}_{al} = 0.5 / \sqrt{\frac{n}{S}}$ s : area of the study region n : number of points



B-AN / L2 **Discrete spatial** variables

U3: Spatial pattern of features

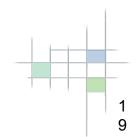


Point features : R index - Example

variables

UNIVERSITAS

Point features : Neighborhood relationships


The most common neighborhood relationship is the measure of proximity to features

• In object mode :

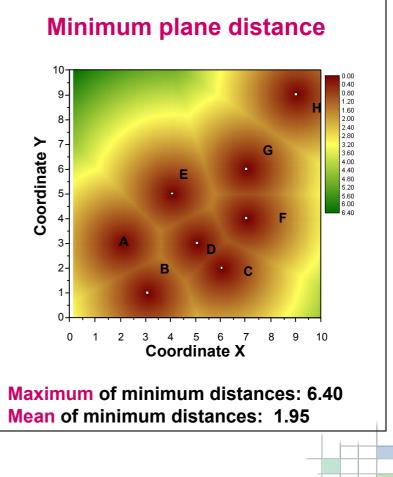
- Areas of largest proximity
 - delimited by equidistance line segments between points (medians)
 - they are called Thiessen or Voronoi's polygons
- In image mode :
 - The distance to the nearest point region
 - Region of largest proximity


B-AN / L2 Discrete spatial variables U3: Spatial pattern of features

Point objects : Areas of largest proximity

Properties

- The space is divided into areas delimited by the medians of segments connecting points
- Any location within each area is closer to its point center than any other
- These areas of largest proximity are called Thiessen or Voronoï 's polygones

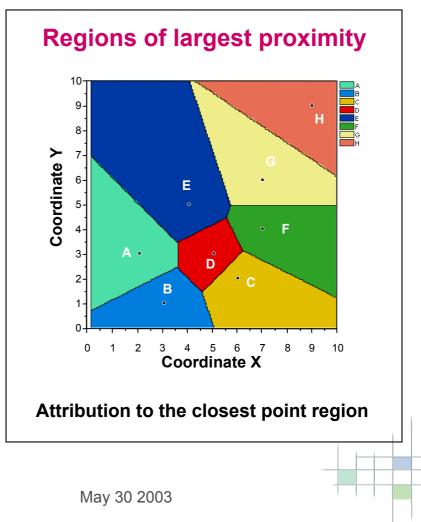


B-AN / L2 Discrete spatial variables U3: Spatial pattern of features

Point regions : Minimum distance

Properties

- Distance image from each cell to the nearest point region, the minimum plane (horizontal, crow fly) distance
- The graphical representation suggests limits of areas of largest proximity
- Image values express the proximity (distance) to the nearest point region, but without identifying it !



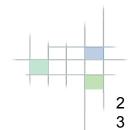
B-AN / L2 Discrete spatial variables U3: Spatial pattern of features

Point regions : Regions of largest proximity

Properties

- Image cells are assigned to the point region with the largest proximity
- Space is divided into areal regions of largest proximity to their center
- Image values identify the point region having the largest proximity. This information adds to the distance value computed above

B-AN / L2 Discrete spatial variables U3: Spatial pattern of features


2

Spatial pattern and neighborhood of linear features

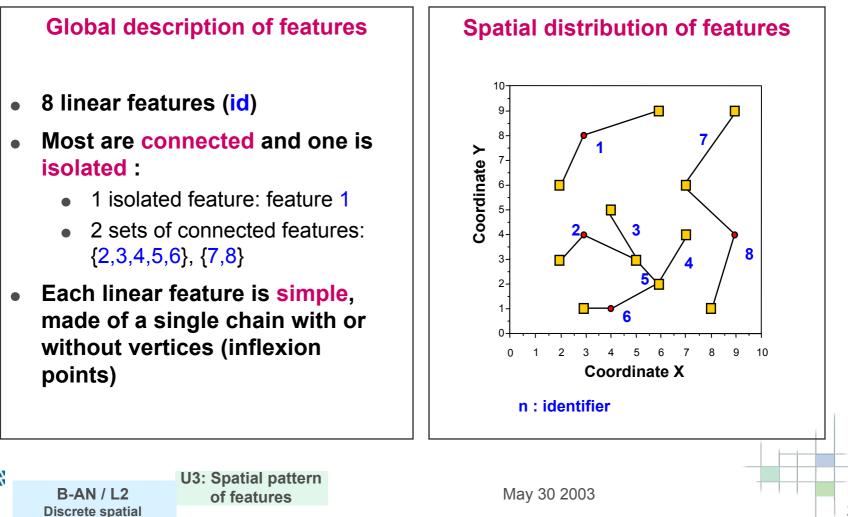
B-AN / L2 Discrete spatial variables U3: Spatial pattern of features

Linear features: Pattern and neighborhood

Different indicators for the spatial distribution and relationships of linear features

- Spatial pattern description:
 - mean size, index of spatial density
- Neighborhood relationships description:
 - connexity indices of linear features
 - distance to features, areas and regions of largest proximity

Connexity indices for linear features organised as a <u>network</u> will be discussed in the Lesson dedicated to accessibility



B-AN / L2 Discrete spatial variables U3: Spatial pattern of features

Linear features: Example of a distribution

variables

INIVERSITAS

Linear features: Spatial density

Definition

- Mean size
 - T_m = L_t / n
 with: L_t : total length
 n : number of features

this index expresses the average length of overall features

- Density
 - $D = L_t / A$

with: L_t : total length A : area of the region

this index can be used to compare density of several regions

Feature	Size	
i eature	(length)	
1	5.3	
2	3.5	
3	2.2	
4	2.2	
5	1.4	
6	3.2	
7	3.6	
8	5.9	
Σ	27.3	
Mean	3.413	

T_m = 27.3 / 8 = 3.413m

D = 27.3 / 100 = 0.273

B-AN / L2 Discrete spatial variables U3: Spatial pattern of features

Linear features: Connexity index

Definition

- C Index of connexity
 - C = c / 0.5 n (n-1)

with: c : number of chains n : number of nodes

The denominator expresses the number of 2 by 2 combinations of connections

Comments

Therefore: 0 >= C <= 1

For a planar network with n>3, C could not be equal to 1

Example

In the above example, the set of 8 features contain 11 nodes and 8 chains, C index value is:

 $C = 8 / 0.5 (11^* 10) = 0.15$

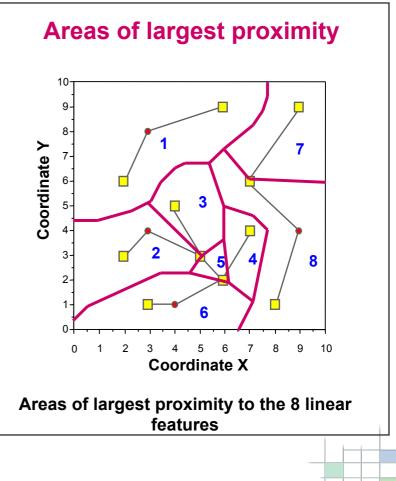
Comments

The connexity of the whole set is low

Each one of the 3 subsets has a different level of connexity:

 $C_1 = 1 / 0.5 (2 * 1) = 1$ $C_{2-6} = 5 / 0.5 (6 * 5) = 0.33$ $C_{7.8} = 2 / 0.5 (3 * 2) = 0.67$

See also Kansky 's beta and gamma indices

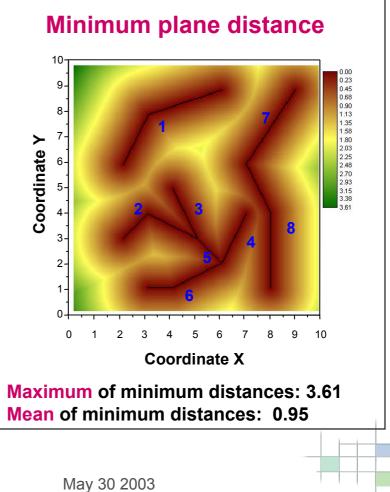


B-AN / L2 Discrete spatial variables U3: Spatial pattern of features

Linear objects: Areas of largest proximity

Properties

- The space is divided into areas with the largest proximity to each linear feature
- Any location within each area is closer to its linear feature than any other
- These areas of largest proximity can be associated to the previously presented Thiessen or Voronoï 's polygones

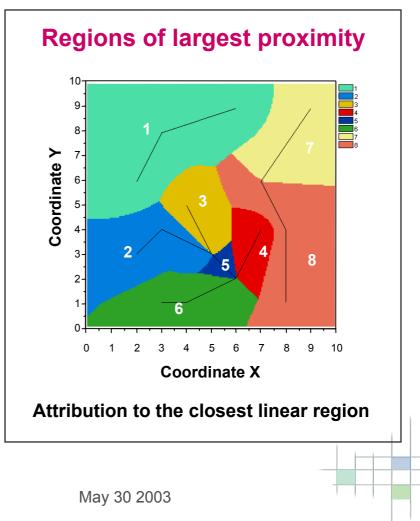


B-AN / L2 Discrete spatial variables U3: Spatial pattern of features

Linear regions: Minimum distance

Properties

- Distance image from each cell to the nearest linear region, the minimum plane (horizontal, crow fly) distance
- The graphical representation suggests limits of areas of largest proximity
- Image values express the proximity (distance) to the nearest linear region, but without identifying it !

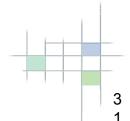

B-AN / L2 Discrete spatial variables

U3: Spatial pattern of features

Linear regions: Regions of largest proximity

Properties

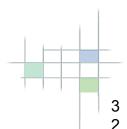
- Image cells are assigned to the linear region with the largest proximity
- Space is divided into areal regions of largest proximity to their linear feature
- Image values identify the linear region having the largest proximity. This information adds to the distance value computed above


B-AN / L2 Discrete spatial variables U3: Spatial pattern of features

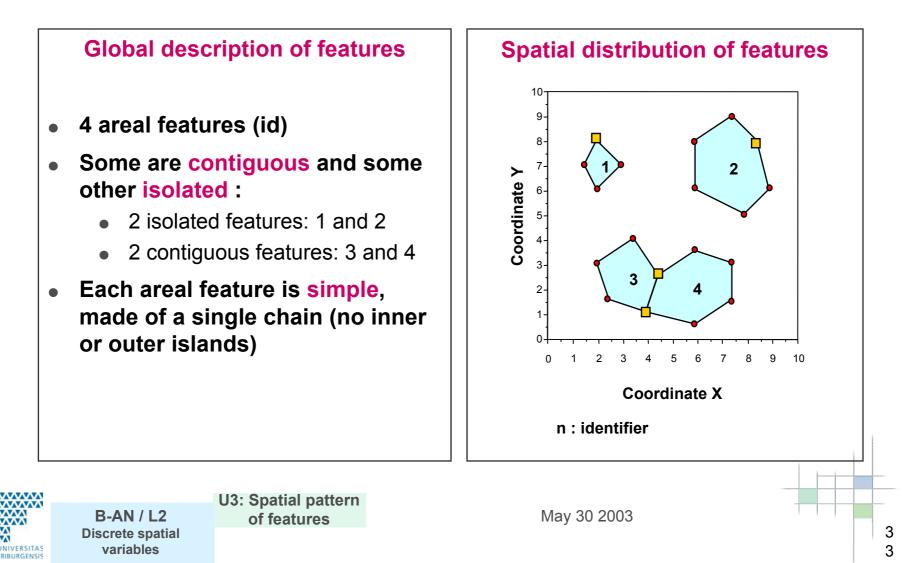
Spatial pattern and neighborhood of areal features

B-AN / L2 Discrete spatial variables U3: Spatial pattern of features

Areal features: Pattern and neighborhood


Different indicators for the spatial distribution and relationships of areal features

- Spatial pattern description:
 - indices of size, index of spatial density
- Neighborhood relationships description:
 - areas of largest proximity
 - distance to features, regions of largest proximity


Proposed density indices are just a selection of indices used in *landscape analysis (see Fragstats)*

B-AN / L2 Discrete spatial variables U3: Spatial pattern of features

Areal features: Example of a distribution

Areal features: Pattern indices (1)

Context

• Landscape analysis

Concepts attached to Landscape analysis are used in this Unit as follow :

- patch : each of the 4 areal features
- class : the set of the 4 areal features
- landscape : the study area

Example

- Geometrical properties
 - areal features

Feature	<u>Perimeter</u>	Area		
1	5.065	1.5		
2	10.929	8.25		
3	8.349	4.63		
4	10.329	7.25		
Class	31.512 *	21.63		
* The perimeter value takes into account the contiguity of areas 3 and 4				

• study area

Perimeter = $4 \times 10 = 40$ m Area = $10 \times 10 = 100$ m²

B-AN / L2 Discrete spatial variables U3: Spatial pattern of features

Areal features: Pattern indices (2)

Definition

- Number of areas (NP)
 NP = number of features
- Density (PD)
 PD = NP / A_R
 with: A_R : area of the region
- Extensivity (%Land)

%Land = 100 (A_C / A_R) with: A_c : area of the class

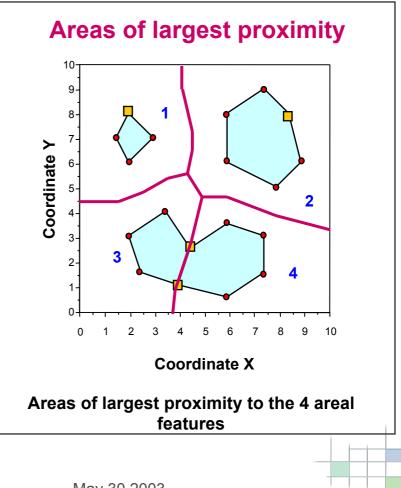
- Mean size (MPS)
 MPS = A_C / NP
 - Size variability (PSSD)

PSSD = standard deviation of the area (acreage)

Example

- Number of areas (NP) NP = 4
- Density (PD)
 PD = 4 / 100 = 0.04
- Extensivity (%Land)
 %Land = 100(21.63/100) = 21.63%
- Mean size (MPS)
 MPS = 21.63 / 4 = 5.41m²
- Size variability (PSSD) PSSD = 27.12/3 = 3.01

The derived coefficient of variation (PSSD / MPS) allows to <u>compare</u> different pattern distributions

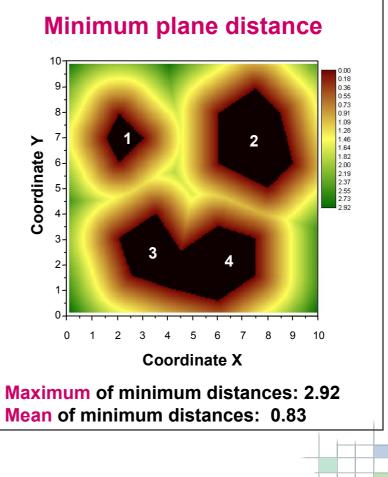


B-AN / L2 Discrete spatial variables U3: Spatial pattern of features

Areal objects: Areas of largest proximity

Properties

- The space is divided into areas with the largest proximity to each areal feature
- Any location within each area is closer to its areal feature than any other
- These areas of largest proximity can be associated to the previously presented Thiessen or Voronoï 's polygones

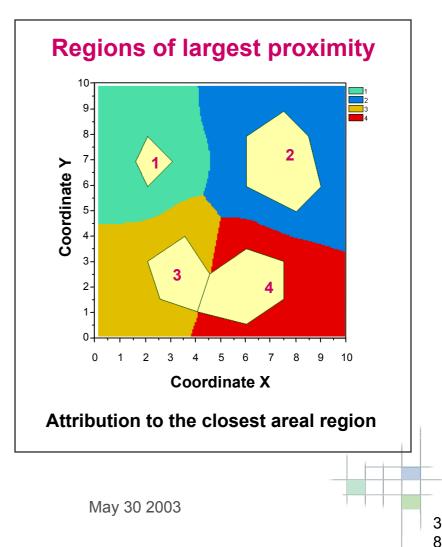


B-AN / L2 Discrete spatial variables U3: Spatial pattern of features

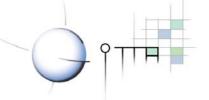
Areal regions: Minimum distance

Properties

- Distance image from each cell to the nearest areal region, the minimum plane (horizontal, crow fly) distance
- The graphical representation suggests limits of areas of largest proximity
- Image values express the proximity (distance) to the nearest areal region, but without identifying it !



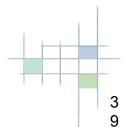
B-AN / L2 Discrete spatial variables U3: Spatial pattern of features


Linear regions: Regions of largest proximity

Properties

- Image cells are assigned to the areal region with the largest proximity
- Space is divided into areal regions of largest proximity to their areal feature
- Image values identify the areal region having the largest proximity. This information adds to the distance value computed above

U3: Spatial pattern of features



Geographic Information Technology Training Alliance

B-AN / L2 Discrete spatial variables U3: Spatial pattern of features

