
Geographic Information Technology Training Alliance (GITTA) presents:

Spatial Partitioning and Indexing

Responsible persons: Claudia Dolci, Dante Salvini, Michael

Schrattner, Robert Weibel

Content

1. Spatial Partitioning and Indexing ...2
1.1. Overview ...3

1.1.1. Spatial Object Approximation ... 3
1.1.2. Spatial Data Access Methods ...5
1.1.3. Basics of Computer File and Database Structures ...6
1.1.4. Principles of Spatial Data Access and Search ..7

1.2. Regular Decomposition .. 9
1.2.1. Regular Grids ... 9
1.2.2. Geometry allocation ...10
1.2.3. Quadtrees ... 11
1.2.4. Searching Quadtrees .. 13

1.3. Object-oriented Decomposition .. 15
1.3.1. Binary Tree .. 15
1.3.2. R-Trees ...16

1.4. Summary ... 21
1.5. Bibliography ... 22

Spatial Partitioning and Indexing

http://www.gitta.info - Version from: 8.11.2010 1

1. Spatial Partitioning and Indexing
This lesson will explain the basic concepts of spatial partitioning and indexing processes. Firstly, regular
decomposition theory is discussed. The different methods are widely described and illustrated with
comprehensive examples.
Afterwards, the object-oriented decomposition is explained, which on completion should allow the
understanding of important aspects of spatial partitioning and indexing.

Learning Objectives

• You recognise the meaning and characteristics of spatial object approximation and spatial data access
methods.

• You know and understand the advantages and disadvantages of space and data driven indexes.

• You are able to compare different regular decompostion methods (regular grids, quadtrees, etc.) and
you are familiar to their specific characteristics.

• You can explain the object-oriented B-tree and R-tree decomposition methods.

Spatial Partitioning and Indexing

http://www.gitta.info - Version from: 8.11.2010 2

1.1. Overview

Introduction
If you are looking on a world map and someone asks you where Geneva is, you will probably move your
attention to the European continent, in particular to Swizerland (provided you know where Geneva
approximately lies). Then you will try to locate successively smaller and smaller regions, where Geneva
should and gradually narrowing until you identify the city at lake Geneva in the southwest of Switzerland.

Only pictures can be viewed in the PDF version! For Flash etc. see online version. Only
screenshots of animations will be displayed. [link]

Whilst searching for Geneva you decomposed the space into sectors. You discarded the ones which aren’t
pertinent to your task and you subdivided the candidate region to contain the city recursively. You
partitioned the map (space), for instance.
Another example: You forgot the phone number of a friend. To find it out you will probably look in the
directories. Actually looking for Mr. Jones, you won’t begin at the first page of the directories going through
until you find it. Surely you will use the index and begin your search by the letter ‘j’ and then slip through all
the pages until you find ‘jo’ and so on. In other words you make use of the indexing applied to the structured
information contained in the directories.
Hierarchical spatial data structures are based on the principle of recursive decomposition. They are attractive
because they are compact and depending on the nature of the data, they can save storage space as well as
time and also facilitate operations such as search.
This means that spatial data access methods (spatial indexing) in geodatabases, e.g. for spatial searches in
geographic information systems, provide fast access to spatial data.

1.1.1. Spatial Object Approximation

Reproduction
A GIS reproduces items of the real world as objects in its data structure and stores them in its database. The
geometry of these objects is normally based on the geometric primitives (point, line, surface), which requires
some simplification and approximation of the shapes (discretized space) as they are in reality. A higher
resolution of the representation requires more processing time as well as considerable storage space and may
therefore not be practical.

Reality

S.Salvatore by Lugano

discretized representation

DTM of the region of Lugano

Spatial Partitioning and Indexing

http://www.gitta.info - Version from: 8.11.2010 3

http://www.gitta.info/SpatPartitio/en//multimedia//world_map.swf

Storage
The approximation of the geometry of spatial objects in GIS is applied for storage purposes as well as for
querying. The geometric attribute of each object uses pointers to the corresponding geometric shape and
bounding box to store an approximation of its extent. The most elementary approximation of a geometric
shape is with its centroid (2 parameters: x and y). The next approximation level adds the radius of a circle
that encloses the object (3 parameters). More complex approximation levels are shown in the table below.
When for instance the searching algorithm retrieves a set of approximated items corresponding to the query,
then those objects are processed using the whole geometric details stored. Through this approximation, the
search of complex objects can be done easily.

Geometry type

Approximation level Point Line Polygon

2 parameters
Through the centroid
(X,Y)

3 parameters
Through a circle
(X,Y,R)

4 parameters
Through a bounding
box (Xul,Yul /
Xbr,Ybr)

Spatial Partitioning and Indexing

http://www.gitta.info - Version from: 8.11.2010 4

n parameters
Through complex
geometries (X1,Y1 /
X2,Y2 / ... / Xn,Yn)

Approximation of spacial objects [After R. Bill, Vol. 1, 1999]

Object approximation by tessellation
The word "tessellate" means to form or arrange small squares in a checkered or mosaic pattern. A regular
tessellation means a tessellation made up of congruent regular polygons. With a tessellation of squares, we
can easily approximate the geometric representation of an object as shown below:

Only pictures can be viewed in the PDF version! For Flash etc. see online version. Only
screenshots of animations will be displayed. [link]

1.1.2. Spatial Data Access Methods

Introduction
Fundamental to all information systems is the need to search through a large quantity of data, in order to find
a subset that satisfies the user’s query. The distinguishing characteristics of geographical data retrieval is that
it is expressed in terms of spatial locations and spatial relationships.
As shown before in general in the introduction, spatial queries may be either location-based
(geometry-based) or phenomenon-based (attribute-based), or a combination of the two (see B-AN: Spatial
Queries).

Attribute-based queries (phenomenon-based)
This type of request selects features or records geographic features that satisfy a statement expressing a set of
conditions that forms the basis for the retrieval. The expression considers only conditions for the attributes
describing the features. In this case the required result may be generated from the intersection of several
layers corresponding to particular thematically specific phenomena.

Only pictures can be viewed in the PDF version! For Flash etc. see online version. Only
screenshots of animations will be displayed. [link]

Geometry-based queries (location-based)
The need to access data specified in terms of geometry (points, lines and polygons) and of spatial
relationships between them, has introduced the requirement for specialized storage and data-search
procedures. This is because, in such a case we need to be able to retrieve records based on some spatial
properties, which are not stored explicitly in the database.
In a relatively simple case, known as a range search, the query may request all data or particular classes that

Spatial Partitioning and Indexing

http://www.gitta.info - Version from: 8.11.2010 5

http://www.gitta.info/SpatPartitio/en/multimedia/approximation.swf
http://www.gitta.info/SpatPartitio/en/multimedia/phen_bas_query.swf

are inside a rectangular spatial window defined by ranges of coordinates in two dimensions. Stored
geometric objects may actually lie within the ranges, i.e. be entirely inside, in which case they can be
retrieved as a whole. Alternatively they may overlap the range, in which case the overlapping objects may
need to be clipped at the boundary of the ranges of the search region to find the part that are inside.

Only pictures can be viewed in the PDF version! For Flash etc. see online version. Only
screenshots of animations will be displayed. [link]

Topological relationships
Queries that include topological relationships between phenomena may make use of stored topological
relations. Commonly used procedures are those to test whether a point, a line or polygon is located inside a
specified polygon. Other related procedures test whether geometric objects are coincident or adjacent with
each other.

Only pictures can be viewed in the PDF version! For Flash etc. see online version. Only
screenshots of animations will be displayed. [link]

1.1.3. Basics of Computer File and Database Structures

Introduction
A goal of GIS is to represent and store the graphic entities of mapped information along with relevant
attributes in such a way to make all the data easily retrievable and manipulable. This is done by taking
advantage of the ways computers handle data in a logical fashion through file and database structures. A
brief overview of the ways computers can handle data is offered here.

Simple List
In this file structure, there really is no absolute ordering of the data. The data occur in the file in essentially
the same way in which they were originally entered. Simple lists may start out in a logical fashion but
whenever modifications are made, they rapidly get out of order because new data are appended to the end of
the list.

Ordered sequential files
They can be thought of as a rolodex (rolodex = rolling index: rotating file device used to store business
contact information) in which we keep everything in alpha-numeric order. As new data are added, the file is
restructured (sorted) to maintain that order.

Indexed file structures
These provide pointers to more efficiently search data. The most efficient system is to develop an index that
is based on a commonly searched attribute in the database, as shown in the following figure. The search is
performed on the index field. Once the record is found, the corresponding complete information is accessed
through the pointer.

Only pictures can be viewed in the PDF version! For Flash etc. see online version. Only
screenshots of animations will be displayed. [link]

Spatial Partitioning and Indexing

http://www.gitta.info - Version from: 8.11.2010 6

http://www.gitta.info/SpatPartitio/en/multimedia/loc_bas_query.swf
http://www.gitta.info/SpatPartitio/en/multimedia/topo_bas_query.swf
http://www.gitta.info/SpatPartitio/en//multimedia//file_struct_index.swf

The software used for management and manipulation of databases is called a database management system
(DBMS). The principles of data storage using DBMS are dealt with in the lesson “Data Management” in the
basic level.

1.1.4. Principles of Spatial Data Access and Search

Introduction
One of the few important principles governing the searching algorithm is the partitioning of the search space
into regions that are usually, but not necessarily, rectangular in shape. Considered simply, this consists of
placing data into uniquely identifiable boxes or cells. These methods are characterized as employing spatial
indexing because with each block the only information that is stored is whether or not the block is occupied
by the spatial object or part of the object.
Jones (1997) distinguishes two types of space decomposition or partitioning: regular decomposition and
object-directed decomposition. Here you will find just a short explanation. They will be discussed in an
exhaustive manner in the following units.

Regular decomposition (space driven indexes)
The space is partitioned in a regular or semi-regular manner that is only indirectly related to the objects in the
space (“space primary”). The idea of superimposing a regular pattern of cells over the geometric data to be
stored has much in common with the raster model of data storage. The main difference between a regular
grid and a raster is that rather than the cells being uniform, equivalent to a pixel, they are compartments
capable of storing geometric objects.

Regular decomposition

Regular decomposition

Object-directed decomposition (data driven indexes)
The partitioning of the index space is determined directly by the objects (“object primary”). This technique
partitions space by means of the coordinates of individual data points or of the extents or bounding
rectangles or geometric objects which are to be stored. There is a multiplicity of object-directed
decomposition search methods. The most common are:

• Binary tree
• R-tree

Spatial Partitioning and Indexing

http://www.gitta.info - Version from: 8.11.2010 7

Object-directed decomposition

Object-directed decomposition

Spatial Partitioning and Indexing

http://www.gitta.info - Version from: 8.11.2010 8

1.2. Regular Decomposition

Introduction
Applying the regular decomposition methods, the data space is divided in a regular or semi-regular way. The
subdivision of space should be specified and afterwards the object will be addressed in the new structure.
The geometry of the object is hence distributed between several adjacent cells (or regions). The objects
descriptions are generally kept intact, while the spatial index cells store references to the database locations
of the complete objects that intersect them. The data associated with each cell will normally be stored in one
or more records, the address of which is given in terms of the coordinates of the lower corner of the cell.
For the regular decomposition of space, cells mainly have three different shapes:

• Triangle: convenient for representing approximately spherical surfaces. Triangles have the advantage
that they can be regularly subdivided any number of times.

• Rectangle: most suitable because its edges can be aligned with the axis of a coordinate system.
Rectangles simplify inclusion analysis within rectangular search window.

• Hexagon: useful for mapping statistical properties since their neighboring centers are equidistant in all
six directions.

1.2.1. Regular Grids

Description
In the regular grids decomposition method, the pattern to place on top of our object is a regular grid.
Assuming that the x and y coordinates are merged into a single ‘composite’ number, this could be used as the
key for a hashed index or be translated directly into a relative record address of a direct access file.
The choice of the cell size is an important issue when defining the manner to discretize the continuous
domain of interest into a regular scheme grid. The content of each cell is stored in one or more records of a
file. To avoid wasted space within the record, it is useful to match the quantity of data in the cells to the size
of the record or vice versa.

An example
We consider a grid extend from 0 to 100 units in each direction and each cell of 10 units square.

Spatial Partitioning and Indexing

http://www.gitta.info - Version from: 8.11.2010 9

Grid 100x100 units

The key K for a cell A with coordinates:

• x = 70
• y = 50

could be: K=75
Note that the last digit of each value is redundant since cells are 10 units apart.
To retrieve data from a rectangular spatial window (B), it is only necessary to derive the address of all cells
covering the window.
For the window:

• x
min

=15 x
max

=37
• y

min
=20 y

max
=45

The corresponding range of cell addresses would be all those keys whose x components lay between 10 and
30 and whose y components were between 20 and 40 (inclusive), the most south-westerly key being the
corresponding range of cell addresses would be all those keys whose x components lay between 10 and 30
and whose y components were between 20 and 40 (inclusive), the most south-westerly key being K=12.

1.2.2. Geometry allocation

Points
Ambiguity exists if a regular grid is used for storing single points, because a point can occupy just a cell. A
problem can occur when the point is placed on the boundary of more than one cell. In this case, a rule should
be formulated, e.g. doubtful points are placed in the cell immediately above or to the right of the border.

Linear geometry
The situation is not so straightforward for allocating linear geometry to grid cells, since lines can frequently
cross cell boundaries. One solution to this problem is to cut the line at the cell boundary and to store the

Spatial Partitioning and Indexing

http://www.gitta.info - Version from: 8.11.2010 10

resulting boundary point twice, in both of the cells that share the boundary. This is not in general a
satisfactory solution, as it tends to degrade the quality of the data by introducing points that ought to be
collinear but are not, due to numerical imprecision of the computer. If linear and polygonal data are not cut at
cell boundaries in a regular grid, the data stored in the cells may be references (or pointers) to the storage
location of the complete geometric objects (Jones 1997).

Index table

1.2.3. Quadtrees

Defintion
Quadtrees represent a partition of space in two dimensions by decomposing the region into four equal
quadrants, subquadrants and so on until the contents of the cells meet some criterion of data occupancy. The
resolution (cell size) of the grid varies depending on the data density.

Quadtree indexing

On one side, the quadtree solution is widely used to solve spatial indexing problems. As shown in the next
lesson (Data Compression), another application field of this technique is the data compression. The quadtree

Spatial Partitioning and Indexing

http://www.gitta.info - Version from: 8.11.2010 11

compression technique is the most common compression method applied to raster data.
The pattern of the linear quadtree numbering sequence is that of a Peano curve, which is one of a variety of
space-filling curves that may be of interest for indexing spatial data, whereby cells that are adjacent in space
are more likely to have similar spatial index addresses that in column or row ordering schema. Hence, data
that are close in space are close in the storage system.

Peano curve

The first use of this particular numbering sequence for spatial indexing is usually attributed to Morton
(1966), and it is sometimes referred to variously as Morton sequence, Morton matrix or Morton numbering,
while individual addresses may be called Morton number. An important property of Morton number is that
they can be generated by alternating successive bits of each of the binary representations of the x and y
coordinates of the lower left corner of the cell to which they refer. The process is called bit interleaving
(Jones 1997).

Bit interleaving process

In the example above the quadtree address 37 is obtained by two steps:

1. Convertion of the decimal coordinates (4,3) to binary (100, 011).
2. The bit-interleaving process produces the binary number (100101), which converted to decimal is 37.

An example
Considering a picture as a matrix A whose dimension is a power of 2, say 2n, this can be subdivided into four
square matrices A

0
, A

1
, A

2
, A

3
, , whose dimensions are half of A. This process can be repeated recursively n

times, until the pixels within a quadrant are all of the same value (homogeneity criterion). The levels can be

Spatial Partitioning and Indexing

http://www.gitta.info - Version from: 8.11.2010 12

numbered, starting with zero for the whole picture, down to n for the single pixel. A particular square may be
labeled with one of the symbols 0, 1, 2, or 3, concatenated to the label of its predecessor square. In this way,
single pixels will have labels that are n characters long. We can express this arrangement as a tree, whose
nodes correspond to the squares. Nodes are connected if one of the corresponding squares immediately
contains the other. The root of the tree corresponds to the whole picture, the leaves to the single pixels, and
all other nodes have down degree 4.

Only pictures can be viewed in the PDF version! For Flash etc. see online version. Only
screenshots of animations will be displayed. [link]

Since the kth-level contains 4k squares, the tree has a total of:

nodes. Therefore, there are approximately 33% more nodes than pixels.
The following figure shows the addressing notation for a 8x8 picture:

Adressing notation

1.2.4. Searching Quadtrees
To search a linear quadtree index, in order to find stored data inside a search window, the window itself may
be described in the form of a list of quadtree cells that cover it. It is not necessary for this search list to
correspond exactly with the window, provided it covers it entirely. Once stored data cells are found that
overlap the search cells, precise comparison can be performed with an exact (vector format) geometric
definition of the search window.

Spatial Partitioning and Indexing

http://www.gitta.info - Version from: 8.11.2010 13

http://www.gitta.info/SpatPartitio/en/multimedia/quad_tree2.swf

Excursus: Grid files
In a grid file the space, of whatever dimension, is divided in a slightly less regular manner, but like a
quadtree, adapts to the spatial variation in data density. The cells of a 2D grid are referenced by a 2D grid
array, the elements of which store the address of other data records (called buckets) storing the geometry that
is inside or intersects the cell. The geographical dimensions of the grid (in 2D) are defined by a set of vertical
and horizontal partition lines. The relationship between real-world grid coordinates of the cells and the grid
array elements is maintained by 1D arrays called linear scales. The coordinate values of the x-direction grid
lines are stored in one 1D array while those of y-direction are stored in another.
A characteristic of the grid file is that a bucket is assumed to be able to store several items of data (actual
geometric data, or references to the storage of relevant geometric data) and that several directory cells may
reference the same bucket (Nievergelt 1984).

Spatial Partitioning and Indexing

http://www.gitta.info - Version from: 8.11.2010 14

1.3. Object-oriented Decomposition

Introduction
In data driven indexing methods (object-directed decomposition) the objects determine the partitioning of
space (e.g. the 2D space containing the lines) into regions called buckets. They are also commonly known as
bucketing methods. There are some principal approaches to decomposing the space from which the data is
drawn. In one possible approach to object-oriented decomposition, partitioning is achieved by applying
divide-and-conquer strategies whereby individual data points or lines may be selected to subdivide the data
space into successively smaller half-spaces (Binary-tree). Another approach buckets the data based on the
concept of a minimum bounding (or enclosing) rectangle (R-tree).
Such strategies generate hierarchical or tree data structures, in which descending down each branch of the
tree should result in reducing the relevant volume of data at each stage. The branching factor defines the
number of branches at each fork and the number of leaves at the end of each branch. The height of a binary
tree is the number of levels within the tree.
In the following section, two main approaches of object-directed decomposition will be presented in order to
clarify the principles that drive these methods.

1.3.1. Binary Tree

Two dimensions
This best known technique applies the principle of divide-and-conquer to the organization and search for
point data. This range search technique makes use of a binary tree to order the data with respect to their x
and y coordinates. Initially a feature located approximately centrally within the range of x coordinates is
chosen to partition the data set vertically into two halves. In each half another feature is chosen in similar
manner to partition the halves along horizontal lines passing through these features. The process of splitting
stops whenever a new subregion contains no other points.

k-D-tree

The branching factor of binary trees is at most 2. In fact every fork has none, one or max. two branches. The
numbers of binary trees of height h = 1, 2, ... are 1, 3, 21, 651, 457653, ...

Spatial Partitioning and Indexing

http://www.gitta.info - Version from: 8.11.2010 15

H = 1 level -> 1 tree

H = 2 levels -> 3 different trees

H = 3 levels -> 21 possible trees

Higher dimensions
The range search approach can be extended into higher dimensionality by considering planes or hyperplanes,
which partition the k-dimensional space into two. As the tree is descended, splitting will take place for each
dimension in turn. The general tree structure is called k-D tree, standing for k-dimensional binary tree (Jones
1997).

Binary search scheme
The tree resulting from the recursive splitting of the data space can be searched to determine points that lie
inside a search rectangle, for instance named D. Starting at the root, a test is performed to determine whether
D lies in one or other of the two regions separated by the point stored in the root node. If D does lie entirely
within one side or the other, the corresponding branch of the tree is descended and a similar test is preformed
with the point in that node. If, however, D is found to cross the partitioning line, a test is performed to find
whether the point in the node lies inside the window. If it does, it is saved. The search then continues down
the branches of the tree before applying the same logic to each of the two branch nodes. The search
terminates at individual nodes when the node is a leaf, i.e. there are no branches to descend.

1.3.2. R-Trees

Description
The R-tree is intended for indexing two (and higher) dimensional objects in terms of their minimum
bounding rectangles (MBR). Nodes of the tree store MBRs of objects or collections of objects. The leaf
nodes of the R-tree store the exact MBRs or bounding boxes of the individual geometric objects, along with

Spatial Partitioning and Indexing

http://www.gitta.info - Version from: 8.11.2010 16

a pointer to the storage location of the contained geometry. All non-leaf nodes store references to several
bounding boxes for each of which is a pointer to a lower level node. The tree is constructed hierarchically by
grouping the leaf boxes into larger, higher level boxes which may themselves be grouped into even larger
boxes at the next higher level. Since the original boxes are never subdivided, a consequence of this approach
is that the non-leaf node ‘covering boxes’ can be expected to overlap each other. Another drawback of this
method is that it does result in a disjointed decomposition of space. The problem is that an object is only
associated with one bounding rectangle. In the worst case, this means that when we wish to determine which
object is associated with a particular point in the two-dimensional space from which the objects are drawn,
we may have to search the entire database.

Searching the R-tree
It consists of comparing the search window with the boxes in each node, starting at the root, and following
the child pointers of those boxes that are included in or overlap the ranges of the search window. The
procedure is continued, possibly down several branches, until reaching the leaf nodes, the contents of which
are then tested against the extent of the search window.

Depth-first searching

A depth-first search (DFS) explores a path all the
way to a leaf before backtracking and exploring
another path.
For example, after searching A, then B, then D, the
search backtracks and tries another path from B.
Node are explored in the order A B D E H L M N I
O P C F G J K Q.
M will be found before J.

A breadth-first search (BFS) explores nodes nearest
the root before exploring nodes further away.
For example, after searching A, then B, then C, the
search proceeds with D, E, F, G.
Node are explored in the order A B C D E F G H I J
K L M N O P Q.
J will be found before M.

Spatial Partitioning and Indexing

http://www.gitta.info - Version from: 8.11.2010 17

Breadth-first searching

Variations of R-tree
To cope with the overlapping boxes this method was improved, decomposing the space into disjoint cells,
which are mapped into buckets. This method based on disjointness partitions the objects into arbitrary
disjoint subobjects and then groups the subobjects in another structure. This data structure is called R+-tree.
Overlapping of rectangles is avoided by clipping them against each other, creating additional, smaller
rectangles. Each object is associated with all the bounding rectangles that it intersects. All bounding
rectangles in the tree are non-overlapping (with the exception of the bounding rectangles for the objects at
the leaf nodes). The result is that there may be several paths starting at the root to the same object. This may
lead to an increase in the height of the tree. However, retrieval time is sped up.
The R*-tree is a variant of the R-tree which makes use of the most complex of the node splitting algorithms.
The algorithm differs from the other algorithms as it attempts to reduce both overlap and coverage. In
particular, the primary focus is on reducing overlap with ties broken by favoring the splits that reduce the
coverage by using the splits that minimize the perimeter of the bounding boxes of the resulting nodes. In
addition, when a node A overflows, instead of immediately splitting A, an attempt is made first to see if
some of the objects in A could possibly be more suited to being in another node. This is achieved by
reinserting a fraction (30% has been found to yield good performance) of these objects in the tree (termed
forced reinsertion). The node is only split if it has been found to overflow after reinsertion has taken place.
This method is quite complex.
The insertion algorithm has following advantages:

• Minimize node overlap
• Minimize area covered by nodes
• Minimize perimeters of the rectangles at leaf nodes

R-Tree split R*-Tree split

Operation with R+-Tree

Spatial Partitioning and Indexing

http://www.gitta.info - Version from: 8.11.2010 18

Searching operation
The idea is to first decompose the search space into disjoint sub-regions and for each of those descend the
tree until the actual data objects are found in the leaves.

Find all objects in range

Result: objects 13, 14, 4, 8

Insertion operation
Insertion of a new rectangle in an R+ - tree is done by searching the tree and adding the rectangle in leaf
notes. The difference from R-tree is that the input rectangle may be added to more than one leaf node, the
reason is that it may be broken to sub-rectangles along existing partitions of the space.

Add object 15 to leaf C

1. Traverse tree top-down, finding all nodes whose directory root contain object’s MBR
2. Node is chosen so that enlargement of rectangles is minimal
3. Repeat until leaf is reached
4. If leaf is not full then add and adjust
5. If leaf is full then a new leaf is created and the objects are split (Split Algorithms)

Deletion operation
Deletion of a rectangle from an R+ - tree is done as in R-trees by first locating the rectangle(s) that must be
deleted and then removing it (them) from the leaf nodes. The reason that more than one rectangle may have
to be removed from leaf nodes is that the insertion routine outlined above may introduce more than one copy
for a newly inserted rectangle.

Node Splitting operation
Splitting algorithm is needed to produce two new nodes. We require that the two sub-nodes cover mutually
disjoint areas; we search for a “good” partition that will decompose the space into two sub-regions. Contrary
to R-tree, downward propagation of the split may be necessary. This is due to that a rectangle R should not

Spatial Partitioning and Indexing

http://www.gitta.info - Version from: 8.11.2010 19

be found in a subtree rooted at a node A unless the rectangle associated with A covers R completely. Hence,
nodes intersected by the partitions must be split recursively.

Spatial Partitioning and Indexing

http://www.gitta.info - Version from: 8.11.2010 20

1.4. Summary
In this lesson the most often used spatial partitioning and indexing methods were discussed. Using spatial
indexing in geodatabases provides fast access to spatial data because only the required part of data is taken
into account for spatial analyzing tasks (e.g. give me the result set of buildings which lie inside a specif
geometry). The first part of the lesson gave a general remark on spatial object approximation and data access
methods. The central point of the module deald with different aspects of regular decomposition (space driven
indexing) and object-oriented decomposition (data driven indexing). Some of the most widely used indexing
methods (quadtrees, B-tree, R-tree, etc.) were explained.

Spatial Partitioning and Indexing

http://www.gitta.info - Version from: 8.11.2010 21

1.5. Bibliography

• BILL, R., 1999. Grundlagen der Geoinformationssysteme - Band 1. 4th. Wichmann Verlag.

• JONES, C., 1997. Geographical Information Systems and Computer Cartography. Prentice-Hall.

• NIEVERGELT, J., 1984. The Grid file: an adaptable symmetric multi-key file structure.
Berlin/Heidelberg: Springer.

Spatial Partitioning and Indexing

http://www.gitta.info - Version from: 8.11.2010 22

