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Continuous spatial variables

1. Continuous spatial variables

Precipitation surface of Switzerland - Niederschlagsoberflache der Schweiz (oben), Karte der Messstationen (unten)

The figure shows a precipitation surface of Switzerland: the blue dots represent monitoring stations; their size
corresponds to the amount of rainfall at that station. The different heights of the surface and their color are
associated with rainfall aswell. The issues addressed in this lesson are:

« How can we construct a continuous surface from approx. 100 monitoring stations?
«  Whichtool can help us do this?
«  What knowledge is necessary and which methods exist?

What do we mean by ''continuous spatial variables'?

In our example, rainfall isthe variable. Let's perform athought experiment: Imagine you could measure rainfall
on any position along a route. You would have a spatially continuous measurement. Adjacent measurements
would be either identical or vary only dlightly (according to your definition of "neighborhood"). You may
argue that precipitation often shows very well defined boundaries — and you're right. The "continuum of
precipitation” is not mathematically perfect. Another example of a spatially continuous variable is sea level.
However, virtually every natural spatially continuous phenomenon is subject to certain random fluctuations.
Therefore, they can hardly be described in a mathematically perfect way (e.g. afunction that exactly describes
the rise of adope, the distribution of different soil pH levels, or rainfall, etc.).

http://www.gitta.info - Version from: 25.4.2016 2



Continuous spatial variables

Random Function

From statistics we know deterministic (i.e. exactly predictable and mathematically recordable) and stochastic
(i.e. purely random, unpredictable) phenomena. An example for a deterministic phenomenon is the fall of an
object: wecan calculatein advance the position of the object along theslopelineat any point intime. In contrast,
rolling dice is a purely stochastic phenomenon. In spatial analysis, we find phenomena that fall between
deterministic and stochastic. They are referred to as random functions. Let's do another thought experiment:
take a look at the flash-animation below. The points represent measurements of height. The actual heights
between the measurement points follow a function that we do not know. However, we will assume that the
heights of the unknown profile are not just random but are similar to the known adjacent points. Let's create a
profile along the blue dashed line. In other words, we define alinear function between the measurement points.
The red solid line shows the actual height profile. In the last image you can see a comparison of both profile
lines. The height in this example is a random function — it is neither exactly mathematically recordable nor
purely coincidental!

Only picturescan beviewed in thisversion! For Flash, animations, movies etc. see online version.
Only screenshots of animationswill be displayed. [link]

Please note: although the grid spacing is actually using discrete spatial units, continuous spatial variables are
generally better suited to araster model.

L earning Objectives

« You can describe the main types of spatial sampling.
o You can provide information about the reasonable size of spatial samples.
« You have mastered the basics of explorative variography.

« You can explain why knowledge of spatial dependencies is important for the analysis of continuous
variables.
« You know the fundamentals of spatial estimation methods (interpolation).

« You can reasonably name applications for interpolations.
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Continuous spatial variables

1.1. Spatial sampling

How do we begin the analysis of continuous variables?

Thefirst step isto create aspatial sample. For the examplein the beginning (rainfall in Switzerland), thiswould
be the meteorol ogical measurement stations. Their positions are fixed and are not freely selectable (unlessyou
use just asubset of al existing stations). However, if you want to analyze e.g. the distribution of contaminants
in the soil you first need to define the measuring points. Y ou must be aware of the following characteristics
of the sasmple:

« Representativeness

« Homogeneity

o  Spatial distribution of measurements
«  Size(i.e. number of measurements)

Representativeness, homogeneity, spatial distribution, and size are related. A size of 5 monitoring stations for
an estimation of the total Swiss rainfall would hardly make sense and is neither representative. Nor would
the selection of all the Swiss-german monitoring stations be representative for the overall estimation of Swiss
rainfal. The size could be sufficient but not the spatial distribution. Selecting all stations below 750 masl
the sample could be sufficient according to size and distribution but the phenomenon is not homogeneously
represented in the sample. A subsequent estimate would be significantly distorted mainly in the areas above
750 masl.

1.1.1. Characteristics

Representativeness

The phenomenon being analyzed should be represented in al forms in the sasmple. Minima and maxima are
of particular importance. For the precipitation example this means that stations with peak values should be
present in the sample. However, if we are planning our own sampling scheme we usually do not know whether
or not we have recorded the locations of minima and maxima.

Homogeneity

As mentioned earlier, the spatial dependence of data among themselves is a very important prerequisite for a
meaningful analysis. This relationship should be homogenous over the entire study areal Take the example of
the precipitation monitoring stations: two stations at a distance of 2 km, for example should both have similar
valuesin Ticino aswell asin Jura, Fribourg, or Grison etc. This prerequisiteis also called "stationarity".

Spatial distribution

Spatial distribution is of great importance. It can be completely random, regular, or clustered. You can see
examples of these distributions below in the "Typology" section. An indication about the spatial distribution
of asample can be statistically obtained by using the "nearest neighbor" method, for example. It is one of the
"point pattern analysis' techniques, i.e. methods that can help statistically characterize and analyze the spatial
distribution of points.

http://www.gitta.info - Version from: 25.4.2016 4



Continuous spatial variables

Size

Thesize, i.e. the number of samples, depends on the phenomenon and the surface area. In some cases, practical
limitations constrain the sample size. Think of measurements in difficult terrain, or technically complex and
expensive measurements. It isimpossible to provide an ideal sample size for any task.

1.1.2. Typology
Different types of design can be used in spatial sampling. The choice of the sasmpling design depends on the
phenomenon investigated or may also be influenced by the methods of measurement.

Random sample
Note the ranges without samples — the phenomenon to be analyzed is underrepresented there.

Random sample

Uniform random sample (with a minimum distance between points)

Uniform random sample

Systematic random sample
The selection shown below is by no means complete. However, it showsthat "systematic” does not necessarily
mean, "square’!

http://www.gitta.info - Version from: 25.4.2016 5



Continuous spatial variables
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Examples of systematic samples

Stratified random samplewith aregular grid (hereat least two pointsper grid box)
Do you recognize the similarity of this type with the uniform sampling? The criterion here is not a minimum
distance, but the division of the area into uniform subsets (strata).

Sratified random sample with a regular grid

Stratified random sample with an irregular grid (hierarchical or authoritative sample)
The idea of a stratified random sample is applied here to an irregular grid. For example, this could represent
administrative districts.

http://www.gitta.info - Version from: 25.4.2016 6



Continuous spatial variables

Stratified random sample with anirregular grid

Clustered random sample
Y ou should have good reasons for selecting this sampling design. This design could also be a primary stage
for valuesto be averaged within the cluster.
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Clustered random sample

Clustered systematic sample

- . - .

Clustered systematic sample

Examples of different types of sampling
Have a look at the following Flash animation showing examples of different types of sampling applied to
Switzerland. The digital elevation model is shown as background information.

http://www.gitta.info - Version from: 25.4.2016 7



Continuous spatial variables

Only picturescan beviewed in thisversion! For Flash, animations, movies etc. see online version.
Only screenshots of animations will be displayed. [link]
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Continuous spatial variables

1.2. Analysis of spatial dependence

After the appropriate spatial sample has been chosen, the next step isto determine whether spatial dependencies
exist between the data, and to which extent. There are several methods to do this. The two which will be
presented in the following section are:

« Thevariogram, or explorative variography, respectively
« "Moving window" statistics

Why do we have to worry about spatial dependencies at al? Is it not enough to have an accurate sample?
No! Without spatial relationships between our samples we cannot make a statement about the points where
no samples were taken. This goes back to a statement by Waldo Tobler, which is known as the "1st law of
geography":

"(...) thefirst law of geography: everything is related to everything else, but near things are more related than
distant things." (Tobler 1970)

In most cases, this legality is indeed true. However, we should not rely on it blindly, especially not while
standing on the edge of acliff...

1.2.1. Variogram

Let us first get acquainted with the problem by looking at an example: Imagine a digital terrain model and
take samples. The value of a sampleisthe height above sealevel. Adjacent samples may have been randomly
taken along avalley floor of the same altitude. Another pair of samples with approximately the same distance
between them may have been taken on aridge. If you compare the values of the two pairs you will notice a
match or at least a similarity of the values. Let's compare samples with a greater distance between them. It is
possible that they have similar values but it is more likely that their values (i.e. the sealevel) are dissimilar.
Variography isamethod that performsthis pairwise comparison for all of our samples: every point iscompared
to every other point. This can add up to alot of pairs of points depending on the number of samples. To be
exact, it addsup to = n*(n-1)/2 (n ... number of samples). Y ou might ask, "Where does the distance comeinto
play?' While each point iscompared to every other point, the distance (and direction) of the pairsisdetermined
aswell!

http://www.gitta.info - Version from: 25.4.2016 9



Continuous spatial variables

Precipitation

3lags (Lag 0, Lagl, Lag?2) for a data point (value 58) are shown.
The numbers are values of Swiss precipitation monitoring stations.

Pairs of values:
for Lag0
58, 65
58, 91
58, 54
58, 72
for Lagl
58, 45
58, 64
58, 82
etc.

From these numerous pairs of values the so-called "semivariance" is calculated as a measure of similarity (and

we can also interpret it as "dependency").

Formula for semivariance

N ... Semivariance for the distance h
... Number of pairswithin distance h
y(h) = } j( pairs within
QN(}I) ... Values at positioni and |

In simple words, the difference between the value pairsis squared and halved. This parameter is calculated for
each distanceinterval h—only thevalue pairswithin thisdistance areincludedin the calculation. Thisdistance h
iscalleda"lag". Enter al value pairswithin onelag on ascatter plot and you will get the so-called h-scatterplot.
From the semivariances per lag, the empirical (or experimental) semivariogram iscreated asalinegraph. Move
the mouse over the lag points to display the corresponding h-scatterplot for the first 8 lags):

Only screenshots of animationswill be displayed. [link]

Only picturescan beviewed in thisversion! For Flash, animations, movies etc. see online version.

Can you imagine why there are clearly fewer pointsin the h-scatterplots of low distancesthan in those

of the higher lags?

Because in the lower lags, fewer pairs of points are in asmaller overall area.
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Continuous spatial variables

The x-axis shows the increasing distance between pairs of points; the y-axis shows the semivariance per lag.
The circular symbols on the curve mark the individual lags. In this example, the lag interval is 15'000. How
do we interpret a curve like that? The more similar the pairs of values are per lag, the lower the semivariance
for thislag; the more dissimilar, the higher the semivariance and thus the curve rises. This curve confirms: the
values of our data are more similar at low distance. There is a direct connection between the distance between
the data points and their similarity in value! There are two key figures to keep in mind to help you describe
this curve:

. Range — the distance h, where the curve flattens
o  Sill —the value of semivariance where the curve reaches its range

If the lag interval in the example above is 15'000 then why isthe first lag (= lag 0 or hO) not in the coordinate
origin? Simply because the pairs of pointsin lag O are at a certain distance from one another. Their average
distance is now the position for lag 0 on the x-axis. But why does the curve not start at semivariance O, i.e. on
the x-axis? Because the datain lag O are not al identical (this is often the case). That is the reason why the
origin of the semivariogram curve usually liesjust above the x-axis. Thisis called the nugget effect. Thisterm
comes from the use of this method in geological exploration. In samples of gold, nuggets can occur selectively,
i.e. the values of immediately adjacent samples may differ considerably.

4000 - 4000 -
2000 2000

0 ffh\ | 0 . |
ol'? 30000 0 30000

a) Lag Oincludes all pairs of points within the first lag. The average distance between the points marks the lag on the x-axis; b) The

pairs of pointsin lag 0 show different values; therefore, the semivarianceis not equal to 0 but slightly above the x-axis (=nugget effect)

In the simplest form, the pairs of values of each point in every direction are formed and an isotropic
semivariogram is created. As an extension and refinement to this method, variogram programs can create pairs
of points in specific directions. By doing this, you can examine if values in your dataset have higher spatia
dependencies in certain directions. Think about the example above with sealevel: if —in your data—thereis
avalley running in N-S-direction, points in this direction will show higher similarities than in E-W-direction.
The result is now an anisotropic semivariogram. If you have lost sight of the overall goal: all thisinformation
about spatial dependencies and its structure can be used to estimate the unknown values.

Use the following interactive semivariance calculator and enter pairs of values. First, choose similar
values (up to 99), then vary the values and | et them be more dissimilar. Observe how the semivariance
changes! Note how easily the semivariance formulais implemented.

Only picturescan beviewed in thisversion! For Flash, animations, movies etc. see online version.
Only screenshots of animations will be displayed. [link]
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Continuous spatial variables

What happensif you enter the same value for every point? Isit of any importance, in what order you
enter the pairs of values?

. If al points have the same value, i.e. are identical, there is a perfect spatial dependency and the
semivariance will be O.

« Theorder of the pairs of values does not matter since negative values become positive by squaring
them.

1.2.2. Moving Windows

Variography allows us to detect spatial dependencies. What it does not detect is whether or not these
dependencies are uniform throughout the whole study area. There could be large regional differences and in
that case, our variogram would not be representative for the entire area! 1t only provides information about
the spatia variability of our data.

The smple technique of the "moving windows"-statistics can help. A "window" of defined size and shape
is moved over the data, the moving distance is equal to the width of the window. All data located within
the window section are statistically summarized: the number and average of al points inside the window,
the minimum / maximum values, the standard deviation, the coefficient of variation (= standard deviation /
mean), etc. The results are again points — the centers of the moving windows and as their attributes the
statistical indicators of these windows. In the case of sparse data, the window is only moved by one half of
the window width to obtain more data to calculate (= moving window with overlap). The principle is shown
in this animation:

Only picturescan beviewed in thisversion! For Flash, animations, movies etc. see online version.
Only screenshots of animationswill be displayed. [link]

Both window size and form may be varied with this method. In practice, it is used in an explorative way
accordingly: an analysis is performed with windows of varying dimensions and the statistics are compared.
In particular, the coefficient of variation is a significant parameter — if its values are > 1, thisindicates a high
variation (= high spatial variability) in this window pane.

Consider the following example of a"moving window"-statistic for the Swiss precipitation data. Regions with
higher rainfall are relatively easy to spot; two of them form akind of NE-SW axis. The size of 30x30 km and
the option of overlap are chosen for the window. The size of such awindow is shown as a gray square. There
is also the possibility to omit windows with less than a defined number of points, e.g. 4, since with such few
points no meaningful statistics can be calculated. That iswhy there are afew "holes'. The mean values reflect
the precipitation totals. However, the coefficient of variation isof particular interest becauseit indicatesregions
with larger value fluctuations. In this situation, the two highest values are located at the southern tip of Ticino.

Only picturescan beviewed in thisversion! For Flash, animations, movies etc. see online version.
Only screenshots of animationswill be displayed. [link]
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Continuous spatial variables

In which of the eight windows from the first example will you find the highest coefficient of variation
and what value does it have?

#i¥

1.2.3.

Window 4 — the coefficient of variation has avaue of 4.8/ 44 = 0.109

Correctly assigning semivariogram-par ameters

Drag the terms to the correct position in the semivariogram figure. Don't worry — after severa failed attempts
you will get help.

32k -7

28
24
20

[
0 10000 20000 20000 40000 S0000 60000 70000 20000 Q0000

5,

L

Nugget Sill Semivarianez Gesambtvarianz

Range Lags Lagdistanz

Correctly assigning semivariogramm-parameters
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Continuous spatial variables

1.3. Spatial Interpolation

Examples of inter polation results

I+ ﬁ Click on the two pictures below to see a simulation of the changing chemical concentration.

¥

Concentration of chemicalsin the soil (Mitas et al. 1998) Chemical concentration in awater (Mitaset a. 1998)

http://www.gitta.info - Version from: 25.4.2016
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Continuous spatial variables

Interpolation of a2 DEM from scattered point data using methods available in GIS: &) given data
and Yoronoi polygons, I:g‘l'JN based linear interpolation, cj inverse distance weighting d) k.ri?l_hg,
ng.

) spline with tension and stream enforcem ent, 1) reguarized spine with tension and smoot

Comparison of different interpolation methods (Mitas et al. 1999)

The examples shown above are the result of careful and sophisticated interpolations from a wide range of
potential applications.

After looking into sampling and the analysis of spatial dependencies in the previous chapter, we now proceed
to the "heart" of this lesson — spatia interpolations. Many of these techniques do not count to the easiest
applicationin spatial analysis. That iswhy wedeliberately restrict ourselvesto abrief overview of the methods.
The following techniques of interpolation are discussed:

« Distance-based interpolation

http://lwww.gitta.info - Version from: 25.4.2016 15



Continuous spatial variables

. Geostatistic methods

The latter being the subject of advanced courses and is not discussed in detail. What actualy are spatial
"interpolations'? This refers to the computation of unknown values based on neighboring known values.

1.3.1. Typology

"Inverse distance" weighting, "radial basis’" functions, "splines’, "ordinary kriging", "natural neighbor",
"polynomial regression” methods, "universal kriging", etc. These are just some interpolation methods found in
commercia software. The diversity of methods and their parameterizations can be confusing. Therefore, we
will first try to classify the methods into schemes. In the following table, different approaches can be seen:

L ocal vs. global inter polation

Globa methods are applied to ALL data in the study area; local methods on the other hand, are only applied
to spatially defined subsets. Global interpolation is therefore not suited for the determination of exact values
but to assess global spatial structures.

As examples, you can see alinear trend surface which was determined by regression from Swiss rainfall data
and shows atrend toward increased precipitation totals from SE to NW, and alocal interpolation using aradial
basisinterpolation:

. & =
... 2 '- o s * o'
"4 = O R
&
" Ii'l- & ) LR r:'
S o o e A
- . ® .« *
o L] 4. . a - -
° ® L
L] - &
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Precipitation {mm)

R I
R A - - . . ol ol

Example of a global interpolation —linear trend surface for Swiss rainfall data. (Provided by Ross Purves)

http://www.gitta.info - Version from: 25.4.2016
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Precipitation [m.m}
BT T [T
e @,m" o aﬁf‘{: -'F@ @ﬁ”gﬁﬁ‘ @’ﬁ &

Example of a local interpolation — spline interpolation for Swiss rainfall data. (Provided by Ross Purves)

Exact vs. approximate inter polation

Exact interpolation means. the estimated surface passes through all points whose values are known. In
approximate interpolation, the estimates of known points can vary from known values. The latter method can
be usefully applied when the known datais already somewhat fuzzy.

MNatural Neighbor Interpolation,
constant mode

Exact Interpolation: the estimated surface passes exactly through the known points (here schematically shown as columns) (Wyatt 2000)

http://lwww.gitta.info - Version from: 25.4.2016 17



Continuous spatial variables

Inverse Distance Weighting
with some smoothing

||
-

Approximate Interpolation: the estimated surface does NOT pass through the known points (here schematically shown as columns) (Wyatt
2000)

Gradual vs. abrupt inter polation
This distinction mainly refers to the resulting estimation surface. Were there breaklines (naturally abrupt
changesin values such asin cliffs or lakefronts) included in the interpolation or not?

Deter ministic vs. stochastic inter polation

Techniques of deterministic interpolation are based on exactly predetermined (= deterministic) spatial contexts;
in stochastic approaches on the other hand, random elements have an impact as well. Deterministic methods
show clear disadvantagesin interpolating natural spatial phenomena, since agiven degree of uncertainty always
exists.

1.3.2. Distance-based inter polation

Inthesimplest case, we can proceed with distance-based methodsthe sameway aswith the" movingwindows"
method: wedefineacertain " neighborhood" of known data points around the unknown position to be estimated
each time; the arithmetic mean of these known measurement values is our estimate (= moving average). The
neighborhood can be defined in different ways:

« A gpatially fixed shape (rectangle, circle, etc.)
« A certain number of nearest neighboring points

However, this method is quite fuzzy because of the different distances between the position to be estimated and
the poor integration of known pointsin the interpolation. The actual distance-based methods use exactly these
distances between the estimation points and the known measurement points to weigh their influence in the
calculation of the estimated value. By the way, they require alinear spatial correlation between the phenomena.
Using the so-called "Inverse Distance Weighting" method or IDW, the weight of any known point is set
inversely proportional to its distance from the estimated point. It is calculated as follows:

http://www.gitta.info - Version from: 25.4.2016 18



Continuous spatial variables

n o1 = value to be estimated
Z v = known value
. = ds_ ! di..., d = distances from the n data points to the point
V=" estimated n
° 1
i=l d_r’
Inverse Distance Weighting IDW — basic formula

In most cases, you will find the following variation, in which the influence of the distance can be additionally
controlled by an exponent (which is preset to 2 in most programs).

n 1 = valueto be estimated
_ = known value
~ g8 dPi.., dP,=di i
| i i..., d " = distances from the n data points to the
| 1 power of p of the point estimated
i=l d ﬁi

Most common form of I DW formula with added distance weighting
exponent

The lower the exponent, the more uniformly all neighbors are incorporated into the calculation (regardless
of their distance), and therefore, the "smoother" the estimated surface. The higher the exponent, the more
accentuated and "unsettled" is the surface because only the weight of the nearest neighbors isintegrated in the
interpolation (see the following interactive animation).

Only picturescan beviewed in thisversion! For Flash, animations, movies etc. see online version.
Only screenshots of animationswill be displayed. [link]

Advantages of the IDW interpolation:

. Italowsfor very fast calculations
. Different distances are integrated in the estimation
.  Thedistance-weighting exponent is able to precisely control the influence of the distances

Disadvantages of the IDW inter polation:

. Itisnot possible to do adirection-dependent weighting. That means that spatially oriented relationships
areignored (e.g. elevation points along aridge).

« Unsightly artefacts are the so-called "Bulls-eyes' — these are circular areas of equal values around the
known data points. However, applying a variation of the IDW-Interpolation developed by Shepard
(1968) can reduce the Bulls-eyes:

http://www.gitta.info - Version from: 25.4.2016 19
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Continuous spatial variables

i 1 I ] 1 L 1 L
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IDW "Bulls eye" effect: concentric areas of the same value IDW modified after Shepard: the Bulls-eyes are definitely
around the known points — an unwanted artefact of the IDW reduced.
interpolation.

Inver se Distance Weighting (IDW) —interactive animation

The following interactive animation shows 10 data points (blue) with known measurement values
(numbers next to the points) and one point, which value is to be calculated (red). At the start of the
animation, this value is calculated from the given values and distances. To get to know the principles
of IDW interpolation better, you can now experiment with this animation:

«  Change the position of one or all points with your mouse.
« Modify the default values for the known points (allowing atotal of max. 4 digits).
«  Set the distance-weighting exponent to a value other than 2 (total max. 4 digits alowed).

Only picturescan beviewed in thisversion! For Flash, animations, movies etc. see online version.
Only screenshots of animations will be displayed. [link]

Answer the following questions keeping the experiment in mind:

1. Which measurement values influence the result even more when exponent is set higher?
2. If the exponent is set to 0, how do different distances influence the estimation, or what does the result
solely depend on in this case?

1. Thehigher the distance exponent is set, the more influence the values of the near est neighbors
have on the result.

2. Isthedistance exponent set to 0 (zero), aweight of 1 isassigned to any distance, i.e. al distances
are absolutely equal. The result depends only on the measur ed values themselves and not on
the distance. The interpolation no longer has a spatial component.
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1.3.3. Geostatistical Interpolation

One of the disadvantages of the IDW interpolation is the lack of direction-specific (anisotropic) information.
Therefore, spatial correlations are ignored and are not integrated into the result of the estimation. This
disadvantage is leveled out by geostatistical interpolations.

The name "geo" aready points to the most important feature of these methods: spatial-statistical parameters
constitute the main basis for these interpolation methods.

Thevariogram or thevariography (i.e. the method to deriveit from spatial point data) isthe basisfor asuccessful
geostatistical interpolation.

Geostatistical interpolations are advanced and to some extent complicate methods. Their sensible application
reguiresalarge amount of knowledge and experience. At thispoint, afew keywords about their implementation
will be sufficient.

The main procedures are the Kriging methods. They are named after a South African engineer, D.G. Krige. In
his diploma thesis in 1951, he laid the foundations for kriging. However, the main developments come from
the work of G. Matheron in the 1960s.

Using variography, we get indications of how similar or dissimilar the measurement values of adjacent data
points are as a function of their distance from each other.

Variography
a) First, we constitute pairs of all the data points and compare their two values. Of each data pair we know the
difference (semivariance) and the distance (h):

AN (Zx+my-Zv) ’

2

/ =

Variogram cloud, differences between data points vs. spatial distance between these points
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b) Second, we divide the distances (x-axis) into intervals (so-called lags) and we take the mean of the
semivariances of the data pairs within (red dots). By connecting these red points of every lag, we get the
experimental variogram. This curve describes how similar the values of two adjacent positions are asafunction
of their distance from each other.

/Ny (h
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Experimental variogram, the differences are averaged per defined class (hl...h5 = lag intervals)

) To better handle this representation of spatial (dis-)similarity, we can construct simple curve functions onto
the experimental variogram to match it aswell as possible. This curveis caled the theoretical variogram.
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/Ny (h)

_,.-'"'r

Theoretical variogram, a theoretical variogram function is matched onto the sequence of the averaged differences per class (= per lag).

Now, we attempt Kriging by incorporating our data into this model of spatial continuity — the model that we
have developed or found in the section about variogram modeling. Based on such a model we can calculate
error variance for our estimations and seek their minimum.

Interpolation with Kriging is akind of curve fitting: from our known data points we have derived a model of
how the spatial relationships might be designed. Based on that model we now estimate the unknown points. If
we consider it in two dimensions only (for simplicity), we work with aregression technique: a curve fitting.
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Kriging in zwel Dimensionen: Die blau umrandeten Quadrate sind unsere bekannten Datenpunkte, die rote Linieist der
geschétzte Verlauf, und die griinen Linien reprasentieren die statistischen Rahmenparameter aus unserem Modell (Wikipedia)

1

You often hear the term "exact interpolator" in connection with Kriging, just like IDW and some other
estimation methods. This means that a surface estimated with one of these methods is intersecting the known
data points. If we perform the Kriging calculation at a position of a known value, Kriging will typically give

us exactly that valuein return.

In comparison, see below for the result of an inverse distance weighting compared to that of a Kriging

interpolation:
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Precipitation [ml'n]
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Estimation surface by using inverse distance weighting; Swissrainfall data; Note that there are

some,, corona” (regions of the same values) around known data points. (Provided by Ross Purves).

':; i,

Precipitation (mm)
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Result of a Kriging interpolation with Swiss rainfall data; here, no corona are to observe because the Kriging

method ,, knows" spatial relationships. It obtains this information from the variogram. (Provided by Ross Purves).
Other important parametersfor interpolations. Search neighborhood
All interpolation methods can additionally be controlled by the definition of a search neighborhood, i.e. how
many or which known data points are used to calculate an unknown position. If we ignore this neighborhood,
al available known data are used for the estimation of every point. In the case of the Swiss rainfall data, this
would mean that for the cal culation of a precipitation valuein Ticino, the values of observation stationsin Jura
areincluded aswell. Thisjust does not make any sense.
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1.4. Summary

Spatially continuous phenomena such as rainfall or sea level cannot simply be described by a mathematical
function. To analyzethese variables, aspatial sample, i.e. acertain number of measurement points, isset up. To
visualizeacontinuous spatial variable, the val ues between the measurement pointsneed to beinterpolated. First,
the spatial sample or the set-up of the measurement points must be defined according to these characteristics:
representativeness, homogeneity, a spatially optimal distribution, and sufficient number of points. Depending
on the phenomenon and the measurement method, the design type of the spatial sample can vary (e.g. random
sample, systematic sample, stratified sample, or clustered sample). Before the interpolation, we need to check
if thereis a dependency between the spatial data. Two methods are suited for this purpose: variography or the
“moving windows’ -method. Variography shows spatial dependency of the samples but not whether or not this
dependency isequally distributed over the whol e study area. For this, the “ moving window” -method is applied.
For the interpolation itself, severa approaches with different consequences exist. Two ways to interpolate
are presented here: the distance-based interpolation IDW (inverse distance weighting), and the geostatistical
interpolation. With IDW, different distances are incorporated differently into the estimation. The influence
of the distance weighting can be controlled by choosing the distance-weighting exponent. The higher the
exponent, the more influence the measurement values of the adjacent points have on the result. However, it is
not possibleto have adirection-dependent weighting. With the geostatistic interpol ation, the variography asthe
basisis derived from statistically distributed parameters. From the variography, the similarity of adjacent data
points as afunction of their distance from each other isindicated. The most important geostatistic interpolation
methods are the Kriging methods.
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