
Spatial Partitioning and Indexing

Dante Salvini∗ Claudia Dolci† Robert Weibel‡

Michael Schrattner§

February 17, 2010

∗ETHZ salvini@geod.baug.ethz.ch, Content
†ETHZ dolci@geod.baug.ethz.ch, Concept
‡UNIZH weibel@geo.unizh.ch, Overall
§FHNW susanne.bleisch@fhnw.ch, Revision

1

2

Contents

Content 2

Spatial Partitioning and Indexing 3

Overview . 4

Spatial Object Approximation 5

Spatial Data Access Methods 8

Basics of Computer File and Database Structures 10

Principles of Spatial Data Access and Search 11

Regular Decomposition . 13

Regular Grids . 14

Geometry allocation . 16

Quadtrees . 17

Searching Quadtrees . 20

Object-oriented Decomposition . 21

Binary Tree . 22

R-Trees . 25

Summary . 30

SPATIAL PARTITIONING AND INDEXING 3

Spatial Partitioning and Indexing

This lesson will explain the basic concepts of spatial partitioning and in-
dexing processes. Firstly, regular decomposition theory is discussed. The
different methods are widely described and illustrated with comprehensive
examples.

Afterwards, the object-oriented decomposition is explained, which on com-
pletion should allow the understanding of important aspects of spatial par-
titioning and indexing.

Learning Objectives

� You recognise the meaning and characteristics of spatial object ap-
proximation and spatial data access methods.

� You know and understand the advantages and disadvantages of space
and data driven indexes.

� You are able to compare different regular decompostion methods (reg-
ular grids, quadtrees, etc.) and you are familiar to their specific char-
acteristics.

� You can explain the object-oriented B-tree and R-tree decomposition
methods.

SPATIAL PARTITIONING AND INDEXING 4

Overview

Introduction

If you are looking on a world map and someone asks you where Geneva
is, you will probably move your attention to the European continent, in
particular to Swizerland (provided you know where Geneva approximately
lies). Then you will try to locate successively smaller and smaller regions,
where Geneva should and gradually narrowing until you identify the city at
lake Geneva in the southwest of Switzerland.

Please note:
Only pictures can be viewed in the PDF version! For Flash etc. see online
version. Only screenshots of animations will be displayed.

Figure 1: world map.swf

Whilst searching for Geneva you decomposed the space into sectors. You
discarded the ones which aren’t pertinent to your task and you subdivided
the candidate region to contain the city recursively. You partitioned the
map (space), for instance.

Another example: You forgot the phone number of a friend. To find it out
you will probably look in the directories. Actually looking for Mr. Jones,
you won’t begin at the first page of the directories going through until you
find it. Surely you will use the index and begin your search by the letter ’j’
and then slip through all the pages until you find ’jo’ and so on. In other
words you make use of the indexing applied to the structured information
contained in the directories.

Hierarchical spatial data structures are based on the principle of recursive
decomposition. They are attractive because they are compact and depend-
ing on the nature of the data, they can save storage space as well as time
and also facilitate operations such as search.

This means that spatial data access methods (spatial indexing) in geo-
databases, e.g. for spatial searches in geographic information systems, pro-
vide fast access to spatial data.

SPATIAL PARTITIONING AND INDEXING 5

Spatial Object Approximation

Reproduction .

A GIS reproduces items of the real world as objects in its data structure
and stores them in its database. The geometry of these objects is normally
based on the geometric primitives (point, line, surface), which requires some
simplification and approximation of the shapes (discretized space) as they
are in reality. A higher resolution of the representation requires more pro-
cessing time as well as considerable storage space and may therefore not be
practical.

Reality .

Figure 2: S.Salvatore by Lugano

discretized representation .

Storage .

The approximation of the geometry of spatial objects in GIS is applied for
storage purposes as well as for querying. The geometric attribute of each
object uses pointers to the corresponding geometric shape and bounding box
to store an approximation of its extent. The most elementary approxima-
tion of a geometric shape is with its centroid (2 parameters: x and y). The
next approximation level adds the radius of a circle that encloses the object
(3 parameters). More complex approximation levels are shown in the table

SPATIAL PARTITIONING AND INDEXING 6

Figure 3: DTM of the region of Lugano

below. When for instance the searching algorithm retrieves a set of approx-
imated items corresponding to the query, then those objects are processed
using the whole geometric details stored. Through this approximation, the
search of complex objects can be done easily.

Geometry type
Approximation level Point

Please note:
Only pictures can be viewed in the

PDF version! For Flash etc. see online
version. Only screenshots of
animations will be displayed.

Line
Please note:

Only pictures can be viewed in the
PDF version! For Flash etc. see online

version. Only screenshots of
animations will be displayed.

Polygon
Please note:

Only pictures can be viewed in the
PDF version! For Flash etc. see online

version. Only screenshots of
animations will be displayed.

2 parameters
Through the centroid (X,Y)

Please note:
Only pictures can be viewed in the

PDF version! For Flash etc. see online
version. Only screenshots of
animations will be displayed.

Please note:
Only pictures can be viewed in the

PDF version! For Flash etc. see online
version. Only screenshots of
animations will be displayed.

Please note:
Only pictures can be viewed in the

PDF version! For Flash etc. see online
version. Only screenshots of
animations will be displayed.

3 parameters
Through a circle (X,Y,R)

Please note:
Only pictures can be viewed in the

PDF version! For Flash etc. see online
version. Only screenshots of
animations will be displayed.

Please note:
Only pictures can be viewed in the

PDF version! For Flash etc. see online
version. Only screenshots of
animations will be displayed.

Please note:
Only pictures can be viewed in the

PDF version! For Flash etc. see online
version. Only screenshots of
animations will be displayed.

Table 1:] Approximation of spacial objects [After R. Bill, Vol. 1, 1999]

SPATIAL PARTITIONING AND INDEXING 7

4 parameters
Through a bounding box (Xul,Yul /
Xbr,Ybr)

Please note:
Only pictures can be viewed in the

PDF version! For Flash etc. see online
version. Only screenshots of
animations will be displayed.

Please note:
Only pictures can be viewed in the

PDF version! For Flash etc. see online
version. Only screenshots of
animations will be displayed.

n parameters
Through complex geometries (X1,Y1 /
X2,Y2 / ... / Xn,Yn)

Please note:
Only pictures can be viewed in the

PDF version! For Flash etc. see online
version. Only screenshots of
animations will be displayed.

Please note:
Only pictures can be viewed in the

PDF version! For Flash etc. see online
version. Only screenshots of
animations will be displayed.

Table 1:] Approximation of spacial objects [After R. Bill, Vol. 1, 1999]

Object approximation by tessellation .

The word ”tessellate” means to form or arrange small squares in a checkered
or mosaic pattern. A regular tessellation means a tessellation made up of
congruent regular polygons. With a tessellation of squares, we can easily
approximate the geometric representation of an object as shown below:

Please note:
Only pictures can be viewed in the PDF version! For Flash etc. see online
version. Only screenshots of animations will be displayed.

Figure 4: approximation.swf

SPATIAL PARTITIONING AND INDEXING 8

Spatial Data Access Methods

Introduction .

Fundamental to all information systems is the need to search through a
large quantity of data, in order to find a subset that satisfies the user’s
query. The distinguishing characteristics of geographical data retrieval is
that it is expressed in terms of spatial locations and spatial relationships.

As shown before in general in the introduction, spatial queries may be either
location-based (geometry-based) or phenomenon-based (attribute-based), or
a combination of the two (see B-AN: Spatial Queries).

Attribute-based queries (phenomenon-based) .

This type of request selects features or records geographic features that sat-
isfy a statement expressing a set of conditions that forms the basis for the
retrieval. The expression considers only conditions for the attributes de-
scribing the features. In this case the required result may be generated from
the intersection of several layers corresponding to particular thematically
specific phenomena.

Please note:
Only pictures can be viewed in the PDF version! For Flash etc. see online
version. Only screenshots of animations will be displayed.

Figure 5: phen bas query.swf

Geometry-based queries (location-based) .

The need to access data specified in terms of geometry (points, lines and
polygons) and of spatial relationships between them, has introduced the
requirement for specialized storage and data-search procedures. This is be-
cause, in such a case we need to be able to retrieve records based on some
spatial properties, which are not stored explicitly in the database.

In a relatively simple case, known as a range search, the query may request
all data or particular classes that are inside a rectangular spatial window
defined by ranges of coordinates in two dimensions. Stored geometric objects
may actually lie within the ranges, i.e. be entirely inside, in which case they
can be retrieved as a whole. Alternatively they may overlap the range, in
which case the overlapping objects may need to be clipped at the boundary
of the ranges of the search region to find the part that are inside.

SPATIAL PARTITIONING AND INDEXING 9

Please note:
Only pictures can be viewed in the PDF version! For Flash etc. see online
version. Only screenshots of animations will be displayed.

Figure 6: loc bas query.swf

Topological relationships .

Queries that include topological relationships between phenomena may make
use of stored topological relations. Commonly used procedures are those to
test whether a point, a line or polygon is located inside a specified polygon.
Other related procedures test whether geometric objects are coincident or
adjacent with each other.

Please note:
Only pictures can be viewed in the PDF version! For Flash etc. see online
version. Only screenshots of animations will be displayed.

Figure 7: topo bas query.swf

SPATIAL PARTITIONING AND INDEXING 10

Basics of Computer File and Database Structures

Introduction .

A goal of GIS is to represent and store the graphic entities of mapped in-
formation along with relevant attributes in such a way to make all the data
easily retrievable and manipulable. This is done by taking advantage of the
ways computers handle data in a logical fashion through file and database
structures. A brief overview of the ways computers can handle data is offered
here.

Simple List .

In this file structure, there really is no absolute ordering of the data. The
data occur in the file in essentially the same way in which they were origi-
nally entered. Simple lists may start out in a logical fashion but whenever
modifications are made, they rapidly get out of order because new data are
appended to the end of the list.

Ordered sequential files .

They can be thought of as a rolodex (rolodex = rolling index: rotating file
device used to store business contact information) in which we keep every-
thing in alpha-numeric order. As new data are added, the file is restructured
(sorted) to maintain that order.

Indexed file structures .

These provide pointers to more efficiently search data. The most efficient
system is to develop an index that is based on a commonly searched attribute
in the database, as shown in the following figure. The search is performed
on the index field. Once the record is found, the corresponding complete
information is accessed through the pointer.

Please note:
Only pictures can be viewed in the PDF version! For Flash etc. see online
version. Only screenshots of animations will be displayed.

Figure 8: file struct index.swf

The software used for management and manipulation of databases is called a
database management system (DBMS). The principles of data storage using
DBMS are dealt with in the lesson “Data Management in the basic level.

SPATIAL PARTITIONING AND INDEXING 11

Principles of Spatial Data Access and Search

Introduction .

One of the few important principles governing the searching algorithm is the
partitioning of the search space into regions that are usually, but not neces-
sarily, rectangular in shape. Considered simply, this consists of placing data
into uniquely identifiable boxes or cells. These methods are characterized
as employing spatial indexing because with each block the only information
that is stored is whether or not the block is occupied by the spatial object
or part of the object.

Jones (1997) distinguishes two types of space decomposition or partitioning:
regular decomposition and object-directed decomposition. Here you will find
just a short explanation. They will be discussed in an exhaustive manner in
the following units.

Regular decomposition (space driven indexes) .

The space is partitioned in a regular or semi-regular manner that is only
indirectly related to the objects in the space (“space primary). The idea
of superimposing a regular pattern of cells over the geometric data to be
stored has much in common with the raster model of data storage. The
main difference between a regular grid and a raster is that rather than the
cells being uniform, equivalent to a pixel, they are compartments capable of
storing geometric objects.

Please note:
Only pictures can be viewed in the PDF version! For Flash etc. see online
version. Only screenshots of animations will be displayed.

Figure 9: Regular decomposition

Please note:
Only pictures can be viewed in the PDF version! For Flash etc. see online
version. Only screenshots of animations will be displayed.

Figure 10: Regular decomposition

Object-directed decomposition (data driven indexes) .

SPATIAL PARTITIONING AND INDEXING 12

The partitioning of the index space is determined directly by the objects
(“object primary). This technique partitions space by means of the coordi-
nates of individual data points or of the extents or bounding rectangles or
geometric objects which are to be stored. There is a multiplicity of object-
directed decomposition search methods. The most common are:

� Binary tree

� R-tree

Please note:
Only pictures can be viewed in the PDF version! For Flash etc. see online
version. Only screenshots of animations will be displayed.

Figure 11: Object-directed decomposition

Please note:
Only pictures can be viewed in the PDF version! For Flash etc. see online
version. Only screenshots of animations will be displayed.

Figure 12: Object-directed decomposition

SPATIAL PARTITIONING AND INDEXING 13

Regular Decomposition

Introduction

Applying the regular decomposition methods, the data space is divided in a
regular or semi-regular way. The subdivision of space should be specified and
afterwards the object will be addressed in the new structure. The geometry
of the object is hence distributed between several adjacent cells (or regions).
The objects descriptions are generally kept intact, while the spatial index
cells store references to the database locations of the complete objects that
intersect them. The data associated with each cell will normally be stored in
one or more records, the address of which is given in terms of the coordinates
of the lower corner of the cell.

For the regular decomposition of space, cells mainly have three different
shapes:

� Triangle : convenient for representing approximately spherical sur-
faces. Triangles have the advantage that they can be regularly subdi-
vided any number of times.

� Rectangle : most suitable because its edges can be aligned with the
axis of a coordinate system. Rectangles simplify inclusion analysis
within rectangular search window.

� Hexagon : useful for mapping statistical properties since their neigh-
boring centers are equidistant in all six directions.

SPATIAL PARTITIONING AND INDEXING 14

Regular Grids

Description .

In the regular grids decomposition method, the pattern to place on top of
our object is a regular grid. Assuming that the x and y coordinates are
merged into a single ’composite’ number, this could be used as the key for
a hashed index or be translated directly into a relative record address of a
direct access file.

The choice of the cell size is an important issue when defining the manner
to discretize the continuous domain of interest into a regular scheme grid.
The content of each cell is stored in one or more records of a file. To avoid
wasted space within the record, it is useful to match the quantity of data in
the cells to the size of the record or vice versa.

An example .

We consider a grid extend from 0 to 100 units in each direction and each
cell of 10 units square.

Please note:
Only pictures can be viewed in the PDF version! For Flash etc. see online
version. Only screenshots of animations will be displayed.

Figure 13: Grid 100x100 units

The key K for a cell A with coordinates:

� x = 70

� y = 50

could be: K=75

Note that the last digit of each value is redundant since cells are 10 units
apart.

To retrieve data from a rectangular spatial window (B), it is only necessary
to derive the address of all cells covering the window.

For the window:

� xmin =15 xmax =37

� ymin =20 ymax =45

SPATIAL PARTITIONING AND INDEXING 15

The corresponding range of cell addresses would be all those keys whose x
components lay between 10 and 30 and whose y components were between
20 and 40 (inclusive), the most south-westerly key being the correspond-
ing range of cell addresses would be all those keys whose x components
lay between 10 and 30 and whose y components were between 20 and 40
(inclusive), the most south-westerly key being K=12 .

SPATIAL PARTITIONING AND INDEXING 16

Geometry allocation

Points .

Ambiguity exists if a regular grid is used for storing single points, because
a point can occupy just a cell. A problem can occur when the point is
placed on the boundary of more than one cell. In this case, a rule should be
formulated, e.g. doubtful points are placed in the cell immediately above or
to the right of the border.

Linear geometry .

The situation is not so straightforward for allocating linear geometry to grid
cells, since lines can frequently cross cell boundaries. One solution to this
problem is to cut the line at the cell boundary and to store the resulting
boundary point twice, in both of the cells that share the boundary. This is
not in general a satisfactory solution, as it tends to degrade the quality of
the data by introducing points that ought to be collinear but are not, due
to numerical imprecision of the computer. If linear and polygonal data are
not cut at cell boundaries in a regular grid, the data stored in the cells may
be references (or pointers) to the storage location of the complete geometric
objects [?] .

Please note:
Only pictures can be viewed in the PDF version! For Flash etc. see online
version. Only screenshots of animations will be displayed.

Figure 14: Index table

SPATIAL PARTITIONING AND INDEXING 17

Quadtrees

Defintion .

Quadtrees represent a partition of space in two dimensions by decompos-
ing the region into four equal quadrants, subquadrants and so on until the
contents of the cells meet some criterion of data occupancy. The resolution
(cell size) of the grid varies depending on the data density.

Please note:
Only pictures can be viewed in the PDF version! For Flash etc. see online
version. Only screenshots of animations will be displayed.

Figure 15: Quadtree indexing

On one side, the quadtree solution is widely used to solve spatial index-
ing problems. As shown in the next lesson (Data Compression), another
application field of this technique is the data compression. The quadtree
compression technique is the most common compression method applied to
raster data.

The pattern of the linear quadtree numbering sequence is that of a Peano
curve , which is one of a variety of space-filling curves that may be of
interest for indexing spatial data, whereby cells that are adjacent in space
are more likely to have similar spatial index addresses that in column or row
ordering schema. Hence, data that are close in space are close in the storage
system.

Figure 16: Peano curve

The first use of this particular numbering sequence for spatial indexing is
usually attributed to Morton (1966), and it is sometimes referred to variously
as Morton sequence, Morton matrix or Morton numbering, while individ-
ual addresses may be called Morton number . An important property

SPATIAL PARTITIONING AND INDEXING 18

of Morton number is that they can be generated by alternating successive
bits of each of the binary representations of the x and y coordinates of the
lower left corner of the cell to which they refer. The process is called bit
interleaving [?] .

Please note:
Only pictures can be viewed in the PDF version! For Flash etc. see online
version. Only screenshots of animations will be displayed.

Figure 17: Bit interleaving process

In the example above the quadtree address 37 is obtained by two steps:

1. Convertion of the decimal coordinates (4,3) to binary (100, 011).

2. The bit-interleaving process produces the binary number (100101),
which converted to decimal is 37.

An example .

Considering a picture as a matrix A whose dimension is a power of 2, say
2n , this can be subdivided into four square matrices A0 , A1 , A2 , A3 , ,
whose dimensions are half of A. This process can be repeated recursively n
times, until the pixels within a quadrant are all of the same value (homo-
geneity criterion). The levels can be numbered, starting with zero for the
whole picture, down to n for the single pixel. A particular square may be
labeled with one of the symbols 0, 1, 2, or 3, concatenated to the label of
its predecessor square. In this way, single pixels will have labels that are n
characters long. We can express this arrangement as a tree, whose nodes
correspond to the squares. Nodes are connected if one of the corresponding
squares immediately contains the other. The root of the tree corresponds to
the whole picture, the leaves to the single pixels, and all other nodes have
down degree 4.

Please note:
Only pictures can be viewed in the PDF version! For Flash etc. see online
version. Only screenshots of animations will be displayed.

Figure 18: Quadtree indexing

Since the kth -level contains 4k squares, the tree has a total of:

nodes. Therefore, there are approximately 33% more nodes than pixels.

SPATIAL PARTITIONING AND INDEXING 19

Please note:
Only pictures can be viewed in the PDF version! For Flash etc. see online
version. Only screenshots of animations will be displayed.

Figure 19: quadtree formula1.gif

The following figure shows the addressing notation for a 8x8 picture:

Please note:
Only pictures can be viewed in the PDF version! For Flash etc. see online
version. Only screenshots of animations will be displayed.

Figure 20: Adressing notation

SPATIAL PARTITIONING AND INDEXING 20

Searching Quadtrees

To search a linear quadtree index, in order to find stored data inside a search
window, the window itself may be described in the form of a list of quadtree
cells that cover it. It is not necessary for this search list to correspond exactly
with the window, provided it covers it entirely. Once stored data cells are
found that overlap the search cells, precise comparison can be performed
with an exact (vector format) geometric definition of the search window.

Excursus: Grid files .

In a grid file the space, of whatever dimension, is divided in a slightly less
regular manner, but like a quadtree, adapts to the spatial variation in data
density. The cells of a 2D grid are referenced by a 2D grid array, the elements
of which store the address of other data records (called buckets) storing the
geometry that is inside or intersects the cell. The geographical dimensions
of the grid (in 2D) are defined by a set of vertical and horizontal partition
lines. The relationship between real-world grid coordinates of the cells and
the grid array elements is maintained by 1D arrays called linear scales. The
coordinate values of the x-direction grid lines are stored in one 1D array
while those of y-direction are stored in another.

A characteristic of the grid file is that a bucket is assumed to be able to store
several items of data (actual geometric data, or references to the storage of
relevant geometric data) and that several directory cells may reference the
same bucket [?] .

SPATIAL PARTITIONING AND INDEXING 21

Object-oriented Decomposition

Introduction

In data driven indexing methods (object-directed decomposition) the ob-
jects determine the partitioning of space (e.g. the 2D space containing the
lines) into regions called buckets. They are also commonly known as buck-
eting methods. There are some principal approaches to decomposing the
space from which the data is drawn. In one possible approach to object-
oriented decomposition, partitioning is achieved by applying divide-and-
conquer strategies whereby individual data points or lines may be selected to
subdivide the data space into successively smaller half-spaces (Binary-tree).
Another approach buckets the data based on the concept of a minimum
bounding (or enclosing) rectangle (R-tree).

Such strategies generate hierarchical or tree data structures, in which de-
scending down each branch of the tree should result in reducing the relevant
volume of data at each stage. The branching factor defines the number of
branches at each fork and the number of leaves at the end of each branch.
The height of a binary tree is the number of levels within the tree.

In the following section, two main approaches of object-directed decompo-
sition will be presented in order to clarify the principles that drive these
methods.

SPATIAL PARTITIONING AND INDEXING 22

Binary Tree

Two dimensions .

This best known technique applies the principle of divide-and-conquer to
the organization and search for point data. This range search technique
makes use of a binary tree to order the data with respect to their x and y
coordinates. Initially a feature located approximately centrally within the
range of x coordinates is chosen to partition the data set vertically into two
halves. In each half another feature is chosen in similar manner to partition
the halves along horizontal lines passing through these features. The process
of splitting stops whenever a new subregion contains no other points.

Please note:
Only pictures can be viewed in the PDF version! For Flash etc. see online
version. Only screenshots of animations will be displayed.

Figure 21: k-D-tree

Please note:
Only pictures can be viewed in the PDF version! For Flash etc. see online
version. Only screenshots of animations will be displayed.

Figure 22: bin tree2.gif

The branching factor of binary trees is at most 2. In fact every fork has
none, one or max. two branches. The numbers of binary trees of height h
= 1, 2, ... are 1, 3, 21, 651, 457653, ...

Please note:
Only pictures can be viewed in the
PDF version! For Flash etc. see online
version. Only screenshots of
animations will be displayed.

H = 1 level -> 1 tree

Please note:
Only pictures can be viewed in the
PDF version! For Flash etc. see online
version. Only screenshots of
animations will be displayed.

H = 2 levels -> 3 different trees

Table 2: Legend missing

SPATIAL PARTITIONING AND INDEXING 23

Please note:
Only pictures can be viewed in the
PDF version! For Flash etc. see online
version. Only screenshots of
animations will be displayed.

H = 3 levels -> 21 possible trees

Table 2: Legend missing

Higher dimensions .

The range search approach can be extended into higher dimensionality by
considering planes or hyperplanes, which partition the k-dimensional space
into two. As the tree is descended, splitting will take place for each di-
mension in turn. The general tree structure is called k-D tree, standing for
k-dimensional binary tree [?] .

Binary search scheme .

The tree resulting from the recursive splitting of the data space can be
searched to determine points that lie inside a search rectangle, for instance
named D. Starting at the root, a test is performed to determine whether D
lies in one or other of the two regions separated by the point stored in the root
node. If D does lie entirely within one side or the other, the corresponding
branch of the tree is descended and a similar test is preformed with the point
in that node. If, however, D is found to cross the partitioning line, a test
is performed to find whether the point in the node lies inside the window.
If it does, it is saved. The search then continues down the branches of the
tree before applying the same logic to each of the two branch nodes. The
search terminates at individual nodes when the node is a leaf, i.e. there are
no branches to descend.

Please note:
Only pictures can be viewed in the PDF version! For Flash etc. see online
version. Only screenshots of animations will be displayed.

Figure 23: bin tree search1.gif

SPATIAL PARTITIONING AND INDEXING 24

Please note:
Only pictures can be viewed in the PDF version! For Flash etc. see online
version. Only screenshots of animations will be displayed.

Figure 24: bin tree search2.gif

SPATIAL PARTITIONING AND INDEXING 25

R-Trees

Description .

The R-tree is intended for indexing two (and higher) dimensional objects
in terms of their minimum bounding rectangles (MBR). Nodes of the tree
store MBRs of objects or collections of objects. The leaf nodes of the R-tree
store the exact MBRs or bounding boxes of the individual geometric objects,
along with a pointer to the storage location of the contained geometry. All
non-leaf nodes store references to several bounding boxes for each of which
is a pointer to a lower level node. The tree is constructed hierarchically by
grouping the leaf boxes into larger, higher level boxes which may themselves
be grouped into even larger boxes at the next higher level. Since the original
boxes are never subdivided, a consequence of this approach is that the non-
leaf node ’covering boxes’ can be expected to overlap each other. Another
drawback of this method is that it does result in a disjointed decomposition
of space. The problem is that an object is only associated with one bounding
rectangle. In the worst case, this means that when we wish to determine
which object is associated with a particular point in the two-dimensional
space from which the objects are drawn, we may have to search the entire
database.

Please note:
Only pictures can be viewed in the PDF version! For Flash etc. see online
version. Only screenshots of animations will be displayed.

Figure 25: r tree 1.gif

Please note:
Only pictures can be viewed in the PDF version! For Flash etc. see online
version. Only screenshots of animations will be displayed.

Figure 26: r tree 2.gif

Searching the R-tree .

It consists of comparing the search window with the boxes in each node,
starting at the root, and following the child pointers of those boxes that are
included in or overlap the ranges of the search window. The procedure is
continued, possibly down several branches, until reaching the leaf nodes, the
contents of which are then tested against the extent of the search window.

SPATIAL PARTITIONING AND INDEXING 26

Please note:
Only pictures can be viewed in the PDF version! For Flash etc. see online
version. Only screenshots of animations will be displayed.

Figure 27: Depth-first searching

A depth-first search (DFS) explores a path all the way to a leaf before
backtracking and exploring another path.

For example, after searching A, then B, then D, the search backtracks and
tries another path from B.

Node are explored in the order A B D E H L M N I O P C F G J K Q.

M will be found before J.

Please note:
Only pictures can be viewed in the PDF version! For Flash etc. see online
version. Only screenshots of animations will be displayed.

Figure 28: Breadth-first searching

A breadth-first search (BFS) explores nodes nearest the root before exploring
nodes further away.

For example, after searching A, then B, then C, the search proceeds with
D, E, F, G.

Node are explored in the order A B C D E F G H I J K L M N O P Q.

J will be found before M.

Variations of R-tree .

To cope with the overlapping boxes this method was improved, decomposing
the space into disjoint cells, which are mapped into buckets. This method
based on disjointness partitions the objects into arbitrary disjoint subobjects
and then groups the subobjects in another structure. This data structure
is called R+-tree . Overlapping of rectangles is avoided by clipping them
against each other, creating additional, smaller rectangles. Each object is
associated with all the bounding rectangles that it intersects. All bounding
rectangles in the tree are non-overlapping (with the exception of the bound-
ing rectangles for the objects at the leaf nodes). The result is that there
may be several paths starting at the root to the same object. This may lead
to an increase in the height of the tree. However, retrieval time is sped up.

SPATIAL PARTITIONING AND INDEXING 27

The R*-tree is a variant of the R-tree which makes use of the most com-
plex of the node splitting algorithms. The algorithm differs from the other
algorithms as it attempts to reduce both overlap and coverage. In partic-
ular, the primary focus is on reducing overlap with ties broken by favoring
the splits that reduce the coverage by using the splits that minimize the
perimeter of the bounding boxes of the resulting nodes. In addition, when
a node A overflows, instead of immediately splitting A, an attempt is made
first to see if some of the objects in A could possibly be more suited to being
in another node. This is achieved by reinserting a fraction (30% has been
found to yield good performance) of these objects in the tree (termed forced
reinsertion). The node is only split if it has been found to overflow after
reinsertion has taken place. This method is quite complex.

The insertion algorithm has following advantages:

� Minimize node overlap

� Minimize area covered by nodes

� Minimize perimeters of the rectangles at leaf nodes

Please note:
Only pictures can be viewed in the PDF version! For Flash etc. see online
version. Only screenshots of animations will be displayed.

Figure 29: R-Tree split

Please note:
Only pictures can be viewed in the PDF version! For Flash etc. see online
version. Only screenshots of animations will be displayed.

Figure 30: R*-Tree split

Operation with R+-Tree .

Searching operation .

The idea is to first decompose the search space into disjoint sub-regions and
for each of those descend the tree until the actual data objects are found in
the leaves.

SPATIAL PARTITIONING AND INDEXING 28

Please note:
Only pictures can be viewed in the PDF version! For Flash etc. see online
version. Only screenshots of animations will be displayed.

Figure 31: Find all objects in range

Please note:
Only pictures can be viewed in the PDF version! For Flash etc. see online
version. Only screenshots of animations will be displayed.

Figure 32: Result: objects 13, 14, 4, 8

Insertion operation .

Insertion of a new rectangle in an R+ - tree is done by searching the tree
and adding the rectangle in leaf notes. The difference from R-tree is that
the input rectangle may be added to more than one leaf node, the reason
is that it may be broken to sub-rectangles along existing partitions of the
space.

Please note:
Only pictures can be viewed in the PDF version! For Flash etc. see online
version. Only screenshots of animations will be displayed.

Figure 33: r tree insert2.gif

1. Traverse tree top-down, finding all nodes whose directory root contain
object’s MBR

2. Node is chosen so that enlargement of rectangles is minimal

3. Repeat until leaf is reached

4. If leaf is not full then add and adjust

5. If leaf is full then a new leaf is created and the objects are split (Split
Algorithms)

Deletion operation .

Deletion of a rectangle from an R+ - tree is done as in R-trees by first
locating the rectangle(s) that must be deleted and then removing it (them)

SPATIAL PARTITIONING AND INDEXING 29

Please note:
Only pictures can be viewed in the PDF version! For Flash etc. see online
version. Only screenshots of animations will be displayed.

Figure 34: Add object 15 to leaf C

from the leaf nodes. The reason that more than one rectangle may have to
be removed from leaf nodes is that the insertion routine outlined above may
introduce more than one copy for a newly inserted rectangle.

Node Splitting operation .

Splitting algorithm is needed to produce two new nodes. We require that the
two sub-nodes cover mutually disjoint areas; we search for a “good partition
that will decompose the space into two sub-regions. Contrary to R-tree,
downward propagation of the split may be necessary. This is due to that a
rectangle R should not be found in a subtree rooted at a node A unless the
rectangle associated with A covers R completely. Hence, nodes intersected
by the partitions must be split recursively.

SPATIAL PARTITIONING AND INDEXING 30

Summary

In this lesson the most often used spatial partitioning and indexing methods
were discussed. Using spatial indexing in geodatabases provides fast access
to spatial data because only the required part of data is taken into account
for spatial analyzing tasks (e.g. give me the result set of buildings which lie
inside a specif geometry). The first part of the lesson gave a general remark
on spatial object approximation and data access methods. The central point
of the module deald with different aspects of regular decomposition (space
driven indexing) and object-oriented decomposition (data driven indexing).
Some of the most widely used indexing methods (quadtrees, B-tree, R-tree,
etc.) were explained.

	Content
	Spatial Partitioning and Indexing
	Overview
	Spatial Object Approximation
	Spatial Data Access Methods
	Basics of Computer File and Database Structures
	Principles of Spatial Data Access and Search

	Regular Decomposition
	Regular Grids
	Geometry allocation
	Quadtrees
	Searching Quadtrees

	Object-oriented Decomposition
	Binary Tree
	R-Trees

	Summary

